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Abstract

AUTOMATION OF SPECTROSCOPIC OBSERVATIONS
ON THE DARK SKY OBSERVATORY 32-INCH TELESCOPE

August 2016

Daniel Edwin Rosenberg
B.S., University of North Carolina at Chapel Hill

M.S., Appalachian State University
Chairperson: Richard O. Gray

The 32-inch telescope at Dark Sky Observatory and the GM Spectrograph

attached to it have been remotely operable via internet access since December of

2011, allowing users to carry out spectroscopic observations from the comfort

of their homes. However remote access still requires an observer’s frequent

attention throughout the night. In addition, many observers are university

faculty and often receive telescope time on weeknights. To make observing more

convenient for faculty, and to improve observing efficiency and consistency,

we sought to automate the existing hardware and software systems necessary

to conduct astronomical spectroscopy, while making only necessary additions.

This thesis details our automation efforts, namely incorporating the intelligence

and caution of a human, and the efficiency and consistency of a computer.

We developed a program called RoboticSpectroscopist, with a graphical

user interface, to follow the same observing procedure a human observer would

execute. It communicates with three observatory computers, as well as with

iv



a weather-monitoring program, RoboticWeatherman. Our custom software is

written using the scripting language AutoIt, and incorporates a few standalone

C programs. It controls devices and software using TCP/IP, X-10, ActiveX,

and SMTP communication protocols. It has been designed to protect obser-

vatory equipment and can notify a user via text message should a problem

arise. RoboticSpectroscopist has been noticeably more efficient than human

observers, regularly acquiring upwards of one hundred spectra on clear nights.
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Chapter 1

Introduction

Appalachian State University (ASU) owns, operates, and maintains the Dark

Sky Observatory (DSO). It is a telescope site roughly 45 minutes by car from the

university campus, and is home to five optical telescopes. Dr. Dan Caton is the

observatory director. ASU faculty and students use DSO for research, education,

and community outreach.

In December of 2011, astronomical spectroscopists at ASU gained the ability

to perform their observations remotely from any computer with internet access,

rather than from the control room at DSO. This was a significant change in normal

observing procedure. Observers save 90 minutes of travel, and can conduct their

research comfortably from home. Unfortunately, they often receive a night on the

telescope before or after a regular weekday of academic duties.

Except in inclement weather, remote observing still affords little time for sleep. A

groggy observer may occasionally forget to acquire a calibration image, or acciden-

tally doze for several minutes while the telescope idles. Even an attentive observer
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may pause to choose the next target to observe, record details in an observing log,

or check the weather forecast.

With such conflicts and time-consuming tasks in mind, ASU’s astronomical spec-

troscopists began investigating the feasibility of automating the observatory. Not

only can an automated system perform tasks more quickly, it does not get dis-

tracted or fatigued. In January 2015 we began converting the 32-inch telescope

and attached GM Spectrograph to operate robotically.

Automation became functional around January 2016, and ASU’s astronomical

spectroscopists began to use it extensively at that time. From January to March

2016, automated observing produced an average of 13% more spectra per night

than a human observer during the same period in 2015. In addition, automated

observing was performed while the assigned human observer slept. This thesis

describes the process of adapting the observatory for robotic operation and devel-

oping the control software.

Chapter 2 provides a brief overview of automated spectroscopy, including the re-

quirements, advantages, and challenges, since it was first suggested around 1986.

Chapter 3 describes spectroscopy at DSO, including the manual observing pro-

cedure used until the observatory was automated. The program we developed to

control the observatory and perform observations, RoboticSpectroscopist, is the

subject of Chapter 4. To ensure the safety of the observatory and equipment, we

delegated weather monitoring to a separate program, RoboticWeatherman, which

Chapter 5 details. Chapter 6 concludes our experiences throughout this project.



Chapter 2

History of Automated

Spectroscopy

2.1 A Logical Development

As early as 1986, astronomers recognized the value of automating spectroscopic

telescopes. Modern day technologies, such as charge coupled device (CCD) detec-

tors and fiber-fed spectrographs, were cutting-edge at the time. Powerful computer

processors and large volumes of digital data storage were rare and expensive. How-

ever, Bopp (1986) comments that such issues were “complications, not problems.”

This sentiment was repeated more recently by Koz lowski et al. (2014), with the

caveat that “the profit of automating the entire observing procedure with a com-

plex and expensive instrument could be questionable,” but “[i]n the case of smaller

instruments...optimizing efficiency will bring much profit and scientific payback.”

In short, human oversight is much more important for larger telescopes, where

3
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errors and malfunctions can be extremely costly. Conversely, smaller telescopes

receive the benefit of substantial increases in efficiency with less associated risk.

Ramsey (1992) provides two requirements for automated spectroscopic obser-

vatories, based on robotics being adept at simple repetitive tasks. First, the au-

tomated system must conduct observing procedures without relying on frequent

human input or attention. Second, the instruments and programs used in the au-

tomation must be well-defined or strictly-constrained to prevent behaviors the

automated system is not designed to handle. These prerequisites apply to auto-

mated photometry as well, but become more important for spectroscopy due to

the increased precision required to focus an object on a spectrograph slit or optical

fiber.

2.2 Benefits of Automation

One of the earliest implementations of an automated astronomical observatory

was carried out by Tennessee State University (TSU). Adhering to the require-

ments listed by Ramsey (1992), they discovered that automated observations using

photometric telescopes produced significant improvements in observing efficiency

and data quality when compared to observations performed by human observers

(Eaton, 1995). That experience became the foundation and motivation for TSU to

explore spectroscopic automation.
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2.2.1 Improvements in Observing Efficiency

Eaton (1995) mentions several benefits of the efficiency of automated observing,

one of which is the reduction of monetary cost. Due to the remote locations (e.g.,

desert or mountaintop) of many telescopes, on-site observing may require travel

abroad. Automation can eliminate these costs, since the observer’s presence at the

telescope site may not be required at all. Should the observer have to be present,

the visit may be made either shorter or more productive by automation, resulting

in a lower cost per observation.

Human observers may necessarily introduce pauses between observing tasks, per-

haps to reconsider which target to observe next, to check the weather forecast, etc.

Computers generally incur significantly less overhead, or time not spent observing,

by virtue of performing target selection, weather monitoring, and other essential

tasks in a matter of seconds. Thus a well-designed automated telescope has the

potential to acquire data much more efficiently than a human could, thereby pro-

ducing more data per observing run (Eaton, 1995).

Many astronomers are university faculty, and have academic duties in addition

to research. By automating the repetitive and time-consuming observing process,

they may devote more time and attention to planning observations, analyzing data,

handling teaching responsibilities, etc. Eaton (1995) suggests $50 per hour as the

value of an astronomer’s time, which is “too valuable...to waste on such repetitive

tasks as manual observing.”
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On their own, these improvements in observing efficiency already justify automa-

tion. The ability to obtain more data more quickly at less cost, without the constant

attention of a human observer, could greatly accelerate astronomical study. But

automation offers still more benefits over human observers, namely in the realm

of data quality.

2.2.2 Improvements in Data Quality

Automation requires a well-specified observing procedure. Each separate task

and any applicable constraints must be defined quantitatively. For example, the

threshold between high- and low-quality observations might be defined as a specific

signal-to-noise ratio over a given wavelength range in the spectrum. Such criteria

can be calculated quickly by a computer, even in the midst of acquiring data, and

can be used immediately to adjust the number of exposures required to obtain

high-quality data for a given target (Eaton, 1995).

As mentioned in the previous section, an extensively-automated observatory

may not require any human presence during observing. Eaton (1995) emphasizes

the need for frequent instrument calibration and detailed quality-control reporting,

especially without anyone on-site to diagnose and rectify problems as they occur.

In addition, thorough information about observatory conditions throughout the

night provides observers with context for collected data. Should an observer wish

to omit an unusual observation, details provided in such a report can provide the

necessary basis for doing so.
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Beyond a single night of observing, automation allows for longer and more var-

ied studies. Especially with periodic targets such as variable stars, pulsars, and

quasars, observing the object nightly for a year might be scientifically beneficial,

but logistically impossible for human observers. Observing time on major tele-

scopes is awarded by a Time Allocation Committee (TAC), and observing runs

may vary in duration from single nights to several weeks. Automation allows for

a new possibility: queue-based observing (Eaton, 1995). Rather than award a full

night to any given project, the TAC places all approved projects into a queue, giv-

ing each project or individual target a certain priority level. The observing control

software selects targets based on priority, which may depend on target location,

season, time of night, lunar phase, instrument availability, target periodicity, or

other TAC-assigned factors.

Queue-based observing improves the chance for each target to be observed closer

to its ‘ideal’ times, however that happens to be defined by the particular research

project. It additionally ensures that telescope time is used as efficiently as possible

by selecting the ‘best’ target from a larger pool.

These benefits of automation enumerated by Eaton (1995) respect the prereq-

uisites from Ramsey (1992) and develop the advancements in automated spec-

troscopy predicted by Bopp (1986) into concrete guidelines, albeit without actually

implementing them.
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2.3 Successful Automated Spectroscopy

2.3.1 The Automatic Spectroscopic Telescope

In June 2003, Tennessee State University (TSU) achieved first light on their

two-meter Automatic Spectroscopic Telescope (AST), housed at Fairborn Obser-

vatory in Arizona. The telescope and its systems, as well as target selection and

data reduction software, are controlled by four Linux computers located at the ob-

servatory. TSU wrote their own target selection software based on the Automatic

Telescope Instruction Set (ATIS); one version is described in Boyd et al. (1993).

However TSU’s software improves upon ATIS by accepting more user input re-

garding previously-observed targets. Due to the telescope’s remote location from

the University, the observing routine includes automatic transmission of data and

log files via internet (Eaton & Williamson, 2004).

The AST was designed and constructed from the ground up to be an automatic

spectroscopic telescope. This was a significant advantage; Eaton (1995) mentions

that designing an entire observatory with complete automation in mind influ-

ences hardware and software choices. For example, a manual telescope requires

well-designed user interfaces to make observation as efficient as possible, but such

interfaces are rarely used on a robotic telescope. Rather, precedence is given to

the ease of communication between the myriad programs required to control the

telescope and its instruments. Thus TSU bypassed the issues associated with au-

tomating an existing manual observatory, such as Appalachian State University’s

Dark Sky Observatory (DSO), or the Swiss Euler telescope in La Silla, Chile.
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2.3.2 Conversion of the 1.2-Meter Euler Telescope

While construction on the AST was ongoing in 2001, the team at the Geneva

Observatory was celebrating three years of automated spectroscopy. They had

adapted the manual 1.2-meter Euler photometric telescope to perform robotic

observing in 1990, and installed the CORALIE spectrograph in 19981. One disad-

vantage, Blecha et al. (2001) note, was that the telescope and off-the-shelf CCD

camera were not designed for use in an automated system and had to be adapted

to that purpose. TSU did not encounter the same challenge, thanks to their from-

scratch design for the AST. Nevertheless, Euler was successfully converted to per-

form automated spectroscopy, and even included a few features not present on the

AST (Blecha et al., 2001).

Euler’s novel features included custom graphical user interfaces (GUIs) for all

services comprising the observing procedure. While the converted telescope was

primarily intended to operate autonomously, two additional modes of operation

were provided. One is ‘automatic-attended,’ where the user receives manual control

after an error; the other is fully manual. Blecha et al. (2001) explain that the

inclusion of these modes was based on the principal that “[t]he whole facility

should be designed in a way to be operated by a single person (the observer) who

is not necessarily an astronomer.”

Euler’s top-level control GUI provides sufficient interaction to allow a trained

user to operate the telescope through the entire observing procedure in either

1European Southern Observatory 2016, ‘Swiss 1.2-metre Leonhard Euler Telescope,’ https:
//www.eso.org/public/teles-instr/lasilla/swiss/

https://www.eso.org/public/teles-instr/lasilla/swiss/
https://www.eso.org/public/teles-instr/lasilla/swiss/
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automatic-attended or fully manual mode. Most other services, which range from

cosmetic controls to modifications of telescope guiding parameters, were given

their own GUIs. Observations can be conducted without adjusting any of these

more advanced controls, but they allow easy on-the-fly modification of observing

parameters for experienced astronomers (Blecha et al., 2001).

Complete automation of the Euler telescope was not quite achieved, Blecha et al.

(2001) admit. A few elements of the observatory system, namely data reduction

and maintenance of cryogenic cooling systems, proved prohibitively difficult to

automate. Developing algorithms to consistently identify targets and position them

properly for observation was another challenge: target acquisition was estimated to

be 95% automated, suggesting that it fails to acquire one out of every 20 targets.

Nevertheless, Euler is an example of the well-executed automation of an existing

manual observatory. Considering the cost of designing and constructing a new

observatory, conversion is an attractive option.

2.3.3 Subsequent Automated Spectroscopic Telescopes

While the Euler telescope and Automatic Spectroscopic Telescope (AST) were

the earliest spectroscopic observatories to operate robotically, a number of oth-

ers have been developed since. They range from individual observatories such as

STELLA, Solaris-4, TIGRE, and the Liverpool Telescope 2, to global networks of

automated telescopes including Las Cumbres and Skynet. A discussion of these

facilities and their contributions to spectroscopic automation follows.
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The STELLA Robotic Observatory The Izaña (formerly Teide) Observatory

in Tenerife, Spain is home to the STELLA robotic observatory, which houses two

completely automatic telescopes, appropriately named STELLA-I and STELLA-II.

The latter “is a highly specialized telescope with the single purpose to feed as much

light as possible into an on-axis fiber,” and is used for photometric observations

(Granzer et al., 2010). When it was installed, STELLA-I fed light into the STELLA

Echelle Spectrograph (SES). In 2010, the wide field imaging instrument (WiFSIP)

was installed on STELLA-I, and the SES was moved to STELLA-II (Weber et al.,

2012).

A remarkable feature of the STELLA observatory is that it can operate com-

pletely autonomously for days on end. An internet connection is required only to

retrieve data, upload new target lists, and infrequently perform remote-access ob-

serving. This arrangement supports the extended-duration studies mentioned by

Eaton (1995), especially useful for targets with properties that vary over a period

of several days. The value of such a degree of autonomy is further augmented by

STELLA’s queue-based method of target selection (Granzer et al., 2010).

STELLA’s target selection algorithm is a type of dispatch scheduling, whereby

approved observers submit targets to a master list, and every object on that list

receives a merit value. An object’s merit is based on factors such as desired obser-

vational frequency, permitted sky position, etc., and is updated in real-time. The

observatory control system selects the object with the highest merit as its next

target (Granzer et al., 2010).
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While target selection is comparatively easy, target acquisition is one of the

most difficult processes to automate, Blecha et al. (2001) note. STELLA employs

a method using plate solving, whereby the telescope slews to an object, acquires an

image, and compares it to a catalog of astronomical objects. When the plate-solving

algorithm matches the telescope image to known object coordinates, the telescope’s

pointing can be precisely adjusted to center the target star on the spectrograph

aperture. Once a target has been acquired, the telescope begins guiding on the

target and collecting data (Granzer et al., 2010).

One of STELLA’s features that enables long unattended observing programs is

a sophisticated weather monitoring and prediction system. An independent watch-

dog system monitors computer activity, and closes the observatory roof in the event

of a computer crash. Two separate weather stations at the observatory provide a

redundant level of protection for obtaining vital weather information. The decision

to close the roof is made when a vital quantity reaches its assigned threshold, such

as wind speed exceeding 20 meters per second (Granzer et al., 2010).

Because of STELLA’s location in Tenerife, humidity proved to be a more prob-

lematic quantity, and required the design of custom extrapolation software. The

‘extrapolators’ impose an additional criterion for roof closure: if measured humid-

ity exceeds 70%, or if six of the seven extrapolators predict sustained humidity

above 80%, the roof closes (Granzer et al., 2010).

STELLA’s humidity prediction algorithm illustrates one of the inherent chal-

lenges of astronomical automation; no single set of programs can be successful at

every observatory. With existing telescopes using different and sometimes unique
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hardware and software, most automation efforts will require some degree of cus-

tomization. Building a new telescope for automated observing, however, allows its

design to adhere to an existing control scheme, should it fit the science goals of

the intended project.

Las Cumbres Global Network The Las Cumbres Observatory Global Tele-

scope (LCOGT) Network takes advantage of designing hardware to to meet soft-

ware specifications. It comprises photometric and spectroscopic telescopes around

the world, many of which are designed to be identical. The network is not complete,

but plans include two identical 2-meter telescopes, seventeen identical 1-meter tele-

scopes, and twenty-three identical 40-centimeter telescopes (Brown et al., 2013).

Every instrument will require its own calibrations, but the same control systems

and data reduction pipeline will apply to each group of identical telescopes. Thus

control software will have to be designed for the first 40-centimeter telescope,

but should also work for the other 22 identical telescopes. Unfortunately, minor

modifications, such as STELLA’s humidity extrapolators, may still have to be

made to account for physical differences in the individual observatories.

Skynet A similar telescope network is Skynet, organized by the University of

North Carolina at Chapel Hill. Skynet currently incorporates as many as 21 optical

photometric telescopes, located at various sites around the world. However most

of these telescopes were not constructed from the same designs, nor for the same

science goals, nor even by the same engineers. Consequently, unique control and

data reduction software must be written for each type of telescope.
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All twenty-three of LCOGT’s 40cm telescopes can use the same control systems,

calibration methods, and data reduction algorithms. This similarity could feasibly

reduce the time required to program them by an order of magnitude, an advan-

tage from which Skynet does not benefit. Nevertheless, it is a completely robotic

network, and an excellent resource for teaching, simultaneous observations, and

time-series photometry. It also benefits from inclusion of telescopes built by many

different groups, thus bypassing the need to accrue support, funding, materials, and

labor for their construction. In fact, two of the Dark Sky Observatory telescopes,

the 14-inch and 18-inch, are connected to Skynet2.

Solaris-4 & BACHES Échelle Spectrograph Koz lowski et al. (2014) reports

satisfactory results of evaluation of a prototype BACHES échelle spectrograph

on the Solaris-4 observatory’s 0.5-meter telescope: “BACHES is a very compact

and capable spectrograph well suited for remote and autonomous operation.” Of

particular note is the spectrograph’s compact form; rather than many large spec-

trographs, which are bench-mounted away from the telescope and fed light via

optical fibers, BACHES is mounted directly on the telescope. It receives light from

a guiding and acquisition module (GAM), which contains a movable mirror to

direct light through one of two output ports (Koz lowski et al., 2014).

Unfortunately, mounting the spectrograph on the telescope introduces mechan-

ical flexure, a problem absent from bench-mounted instruments. As the telescope

assumes different positions throughout the night, it and attached instruments flex

due to their own weight. To account for flexure, calibrations must be obtained

2Skynet 2016, Reichart, D., ‘Telescopes,’ https://skynet.unc.edu/telescopes

https://skynet.unc.edu/telescopes
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much more frequently throughout the night, usually before and after slewing the

telescope.

In spite of flexure, mounting BACHES on the telescope allows Koz lowski et al.

(2014) to achieve the goal of conducting both photometry and spectroscopy with-

out interchanging instruments or physically modifying the imaging train. BACHES’s

success supports the idea that small spectroscopic telescopes can feasibly provide

automated contributions to large-scale spectroscopic surveys (Koz lowski et al.,

2014).

TIGRE Robotic Spectroscopic Telescope The Telescopio Internacional de

Guanajuato Robótico Espectroscópico (TIGRE) is a 1.2 meter telescope housed

at the La Luz Observatory, and is operated and maintained by the Department of

Astronomy at the University of Guanajuato (UG). Unlike BACHES, the échelle

spectrograph on TIGRE is a fiber-fed bench-mounted instrument. One of UG’s

primary science goals for TIGRE is monitoring, or time-series astronomy. Moni-

toring involves regularly-repeated measurements of a particular target, with the

goal of studying its behavior over time. Schmitt et al. (2014) cites the sunspot cy-

cle as an area lacking sufficient time-domain data, particularly due to non-uniform

sampling and varied quality of data.

This is one of the data quality problems that Eaton (1995) suggests could be mit-

igated by automation. Especially since astronomers can hardly study the universe

except through observation, the time evolution of astronomical targets can provide

information not available from single images (Schmitt et al., 2014). Insufficiently

frequent observation of variable objects causes aliasing, whereby their true vari-
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able behavior cannot be determined. To accurately understand the sunspot cycle,

for example, the sun’s properties must be measured much more quickly than they

vary. TIGRE and other monitoring or queue-based telescopes, such as STELLA,

are well-equipped for such studies.

The TIGRE telescope system has separate control software for the telescope,

the building, weather monitors, and the spectrograph. Software is written mostly

using Java in a Linux environment, except for image analysis software for the

CCD cameras, which is written using the C language. Data collected by TIGRE

are processed automatically by a custom data reduction pipeline written in the

Interactive Data Language (IDL). Schmitt et al. (2014) note that such automatic

reduction becomes necessary to handle the substantial volume of data, which is

available thanks to the efficiency of robotic observing.

Liverpool Telescope 2 Aimed at the realm of time-domain astronomy, the

Liverpool Telescope 2 (LT2) is being designed as a four-meter-class rapid-response

telescope, able to acquire and observe transient astrophysical phenomena within

minutes of their detection. In particular, Copperwheat et al. (2015) list neutrino

and gravitational wave emissions, which can precede photons from an event and

be detected by other telescopes, as possible ‘triggers’ for LT2. In the time it would

take a human observer to notice an event and telephone colleagues to begin emer-

gency observations, a completely robotic global network could already be collecting

data. Especially since phenomena may last only minutes, rapid acquisition of these

targets-of-opportunity is vital (Copperwheat et al., 2015).
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LT2 will be capable of photometric and spectroscopic observing, although vis-

ible and infrared spectroscopy will be its main goals. Whether the spectrograph

aperture will be a long slit or fiber bundle has not yet been decided3. Though LT2

will perform primarily spectroscopy, Copperwheat et al. (2015) point out that even

images acquired for the purpose of aligning targets on the spectrograph aperture

will themselves provide valid photometric data.

Automation of an observatory to respond to an event within 30 seconds of its

detection adds strict precision constraints to various aspects of the robotic system.

For example, a target may be detected on the opposite side of LT2’s observable

field, requiring a 180-degree slew. And since LT2 will be a spectroscopic telescope,

placing the target on the spectrograph aperture means locating it to within one

arcsecond, or 1/3600th of one degree. Maintaining sub-arcsecond pointing precision

after such a large blind slew is infeasible. So LT2 has been given the goal of placing

a target-of-opportunity within the field of view for photometric observation within

30 seconds of detection. Aligning the target on the spectrograph aperture will take

longer (Copperwheat et al., 2015).

An additional concern is acquisition of a guide star. Depending on a target’s

location, no stars in the visible field may be suitable for telescope guiding. This

condition, which Copperwheat et al. (2015) call open-loop tracking, cannot nec-

essarily be avoided. A transient phenomenon may evolve and disappear in the

time it would take to acquire a guide star required for closed-loop tracking. For

LT2, the “design requirement is that the tracking must allow for a monochromatic

3Liverpool John Moores University 2013, Liverpool Telescope 2, ‘Telescope and Instrumen-
tation,’ http://telescope.livjm.ac.uk/lt2/telescope.html

http://telescope.livjm.ac.uk/lt2/telescope.html
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exposure of at least ten minutes with an image elongation of no greater that 0.2

arcseconds” (Copperwheat et al., 2015). Once a suitable guide star is acquired, the

associated closed-loop guiding constraint is a one-hour monochromatic exposure

with the same image elongation.

LT2 highlights the benefit of an individual robotic telescope being connected to

the internet. Though not an official member of a global telescope network such as

LCOGT, it can receive near-instantaneous notification of a target-of-opportunity,

with enough time to acquire the target and begin observing before transient phe-

nomena disappear. A human observer would be unlikely to replicate this feat.

2.4 The Future of Automated Spectroscopy

The purpose of automating astronomical spectroscopic observation is to make it

somehow better than manual observation. Ramsey (1992) provided guidelines and

Eaton (1995) enumerated motivations. In the two decades following, astronomers

developed robotic telescopes to be more efficient, consistent, and tireless than

human observers. It is still the job of humans to request observations, interpret

data, and publish conclusions, but those tasks can now be accomplished while the

telescopes operate themselves.

In spite of the known and unknown challenges of converting an existing observa-

tory to near-complete autonomy, we began in January 2015 to adapt the 32-inch

telescope at DSO for automated spectroscopy. We encountered many of the same

difficulties and solutions described above, and even accepted or rejected some of

the same software. The history of spectroscopy at DSO, the current manual observ-
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ing process, and the software we have developed to carry out robotic spectroscopy

are described in the following chapters.



Chapter 3

Spectroscopy on the 32-Inch

Telescope and Gray-Miller

Spectrograph

3.1 Overview and History

The Dark Sky Observatory (DSO) is a telescope site owned, operated, and main-

tained by Appalachian State University. It was established in 1981, and its tele-

scopes are used by university faculty and students for observational research, as

well as for public outreach endeavors. The current observatory director is Dr. Dan

Caton, a faculty member in ASU’s Department of Physics and Astronomy. Mr.

Lee Hawkins is the observatory engineer, and performs much of the maintenance

necessary to keep DSO operating safely and efficiently.

20
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DSO houses five telescopes, in separate enclosures around the observatory site.

The 14-inch telescope was assembled by former graduate student Adam Smith

for his Masters thesis, and is connected to the Skynet global telescope network

mentioned in §2.3.3. The 17-inch telescope was donated by Dean Glace. It is con-

trolled remotely, either by ASU observers or by Dean Glace in South Carolina.

The 6-inch robotic telescope was built to monitor stars, as part of the Young Solar

Analogs project. The 6-inch, 14-inch, and 17-inch telescopes are used for photomet-

ric observing. An 18-inch telescope is fitted with a charge-coupled device (CCD)

camera and filter wheel, and is used for photometry of asteroids and eclipsing bi-

nary stars. It is also connected to Skynet. The largest telescope is the 32-inch. Its

main instruments are a CCD camera with a filter wheel, and the Gray-Miller (GM)

Spectrograph. The CCD and filter wheel are used for photometry, while the spec-

trograph is used by several faculty members for medium-resolution spectroscopy

of stars4.

The GM Spectrograph was constructed in 1994. It is a Czerny-Turner spectro-

graph and uses one of two reflection gratings; one with 1200 grooves per millimeter,

the other with 600 grooves per millimeter. It was designed and constructed by Dr.

Richard Gray and Robert Miller, a former machinist who is now retired. The GM

Spectrograph was installed and used on the 18-inch telescope until 1995, when the

32-inch telescope achieved first light. The spectrograph was then moved to the 32-

inch telescope, where early observing was entirely manual. For the first few years

of spectroscopy on the 32-inch telescope, the observer had to acquire targets, as

4Caton, D.B. 2016, ‘Facilities,’ http://dso.appstate.edu/facilities

http://dso.appstate.edu/facilities
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well as keep the telescope pointed at the target, by looking through an eyepiece

and pressing directional buttons on a hand paddle.

A TV system was later installed, which focused a video camera on the reflective

spectrograph slit. This arrangement allowed the observer to guide the telescope

from a comfortable desk in a warm room, rather than using the eyepiece. However

telescope motion was still controlled with the hand paddle. This system was in

place until 2007, when the observatory acquired a CCD guide camera and telescope

guiding software. In general, guiding software analyzes an image from a CCD

camera and determines the necessary telescope adjustment to keep the target in its

optimal position. At DSO, it relayed those positional adjustments to the Telescope

Control System (TCS), which in turn performed the telescope movement.

In December of 2011, DSO astronomers started performing spectroscopic obser-

vations remotely. That was the norm until this automation project began. Once

an observer has installed the instruments required for his or her observations and

rebalanced the telescope accordingly, observing can then be conducted on any com-

puter with access to the internet and virtual network computing (VNC) software.

Remote observing can even obviate the need for an observer to travel to DSO at

all, if no physical changes to the telescope setup are needed.

Despite the conveniences of remote observing, an observer’s constant attention

is still necessary to set up the instruments, slew to targets, turn on and off lights,

control the Guide and Acquisition Module (GAM) and CCD cameras, open and

close the telescope dome, monitor the weather, etc. A description of that manual

procedure follows.
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3.2 Nightly Procedure for Spectroscopy

3.2.1 Instrument Installation and Evening

Installation The 32-inch telescope at DSO is used for different observing projects,

each of which has its own required telescope and instrument configuration. Consec-

utive nights on the telescope are not necessarily assigned to observers with similar

equipment arrangements. Most commonly, after the telescope is used for imaging

or photometry, the next assigned spectroscopist must remove the photometry CCD

and replace it with the spectrograph, rebalance the telescope, recalibrate instru-

ments, and make necessary adjustments in software. For example, when installing

the spectrograph, the observer must properly center the spectrograph slit on the

CCD camera that handles telescope guiding.

Once the proper instruments are installed, observing can be performed entirely

remotely via internet. Most remote interaction with the telescope occurs through

a VNC connection. A few actions, such as providing power to the telescope dome

motors and turning on and off various lights, are controlled by an X-10 controller

addressable from the Activehome Command software. Others, such as powering

the calibration arc lamp, are controlled by Digital Loggers web power switches

accessible from a website.

Software Controls Necessary software adjustments can also be performed via

internet. The telescope’s tracking rate can be adjusted, for example to track a

comet or asteroid, and must be properly set to sky-tracking rate for spectroscopy.

Pixel binning for the CCD can be specified as well; 2x2 binning combines four pixels



3.2 Nightly Procedure for Spectroscopy 24

into one, providing faster data transfer but at reduced resolution. The telescope

must also be adjusted to place the focus of its optical path, the path light takes

through the telescope, on the spectrograph slit.

Calibration - Darks Observing usually begins at evening nautical twilight,

when the sun is 12 degrees below the horizon5. Before that time, the observer will

have started the CCD cooler. Cooling the CCD limits thermal noise being detected

as background noise. This ‘dark current,’ cannot practically be eliminated entirely.

To account for it, an observer acquires calibration images called darks, with the

camera shutter closed and no light sources illuminating the CCD. The resulting

image contains the dark current noise generated by the camera electronics, allowing

it to be subtracted from data images and comparison lamp images during data

reduction. The observer usually acquires darks while the telescope is parked at

zenith, meaning pointed directly overhead, and does so before evening twilight

and after morning twilight.

Calibration - Biases Another source of noise appears when the CCD pixels

are read out and converted to digital values. This readout noise appears nearly

identically on all exposures, independent of exposure time. Thus a zero-second

exposure allows no time for CCD pixels to collect real photons, while producing

an image of the readout noise6. In addition, CCDs are designed to have a non-zero

signal offset; that value is also contained in these bias calibration images. Biases are

5United States Naval Observatory 2011, ‘Rise, Set and Twilight Definitions,’ http://aa.
usno.navy.mil/faq/docs/RST_defs.php

6Deep Sky Stacker 2016, ‘Frequently Asked Questions,’ http://deepskystacker.free.fr/
english/faq.htm

http://aa.usno.navy.mil/faq/docs/RST_defs.php
http://aa.usno.navy.mil/faq/docs/RST_defs.php
http://deepskystacker.free.fr/english/faq.htm
http://deepskystacker.free.fr/english/faq.htm
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subtracted from all data and calibration images, and are acquired at the beginning

and end of the night.

Calibration - Flats Another important calibration is a flat field image, which

describes each pixel’s sensitivity, or response to identical illumination. The 32-

inch telescope uses a flat lamp to achieve roughly uniform illumination across the

spectrograph slit. Another option would be dome flats, created by shining a light

at a diffuse flat surface inside the dome. Data images are divided by the dark-

subtracted flat field response during data reduction. The observer acquires flats

and a special set of dark flats at the end of the night.

3.2.2 Normal Observing

Target Acquisition When calibrations are complete, the sky is sufficiently dark,

and weather is clear, the observer opens the dome and enables dome and telescope

tracking. ‘Sufficiently dark’ is defined by individual observers, according to the

amount of ambient light allowable in their data images. Observing at DSO often

begins at nautical twilight, when the sun is 12 degrees below the horizon. Tracking

allows the dome and telescope to move to compensate for the rotation of the earth.

To begin observing, the observer locates a target in an astronomical object cata-

log, contained in a program called TheSky. TheSky sends the target’s coordinates

to the Telescope Control System (TCS), which slews the telescope to that location.

The telescope uses a guide CCD camera, separate from the main CCD, to keep the

target centered on the spectrograph slit during observations. As long as the slew

places the target within the guide CCD’s roughly 40-arcsecond field-of-view, the
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observer can use a hand paddle to adjust the telescope pointing, or the direction

the telescope points, until the target is centered on the spectrograph slit.

Calibration - Arc Lamp Despite being rigid, the telescope and installed in-

struments flex in unpredictable ways due to their own weight. This flexure depends

on the angle of the telescope, temperature, etc., and can vary on timescales as short

as 30 minutes. Flexure is particularly troublesome for spectroscopy. Some proper-

ties of astronomical objects, such as rotation and relative motion, can be inferred

from the width and location of their spectral lines 7. But if the expected location of

stationary lines is unknown, no conclusion can be drawn about the target’s motion

based solely on the positions of its spectral lines.

To account for flexure and to enable proper wavelength calibrations of stellar

spectra, a hollow-cathode iron argon arc lamp is used to obtain a wavelength

calibration spectrum. During data reduction, a wavelength solution is developed

from the calibration image, by plotting the wavelength of known lines against their

pixel position and performing a regression analysis. The resulting model is then

used to estimate the wavelengths of a target’s spectral lines, based on their pixel

position.

Before acquiring spectra of a target, the observer acquires an arc lamp spectrum.

The lamp itself is mounted next to the spectrograph and points into a small hole

in the telescope’s guiding and acquisition module (GAM). The GAM contains a

mirror on a translation stage to direct light through one of its four ports. Attached

7CSIRO 2016, Australia Telescope National Faciltiy, ‘Information from Astronomical Spec-
tra,’ http://www.atnf.csiro.au/outreach/education/senior/astrophysics/spectra_

info.html

http://www.atnf.csiro.au/outreach/education/senior/astrophysics/spectra_info.html
http://www.atnf.csiro.au/outreach/education/senior/astrophysics/spectra_info.html
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to the translation stage is a second angled mirror which receives light from a fixed

mirror in front of the arc lamp. The observer instructs TCS to move the GAM

mirror to position 2, which orients the translation stage to direct light from the

arc lamp to the spectrograph. The observer then turns on the arc lamp via web

switch, acquires an arc lamp spectrum, returns the GAM to position 4, and turns

off the arc lamp.

Spectroscopy Before acquiring spectra, the target may have to be centered

on the spectrograph slit again using the hand paddle. The observer then enables

telescope guiding. While guiding, the MaxIm DL camera control software actuates

relays that cause minute adjustments to the telescope’s pointing to keep the target

centered on the spectrograph slit. MaxIm DL is described in detail in §4.3. The

observer enters the desired number and duration of exposures into MaxIm DL and

initiates observations. Targets normally receive between three and eight exposures

of 300 seconds each. During that time, the observer can select the next target or

perform other observing-related duties. MaxIm DL handles camera control, saving

images, and guiding.

Clean-Up After MaxIm DL has successfully acquired the desired number of

exposures on a target, the observer repeats the arc lamp calibration. The sky

coordinates of the telescope’s pointing may optionally be synched in TheSky, to

improve future pointing accuracy. The observer also appends that night’s log file

with information about the observations and any problems. This completes the

normal observing procedure for a single target and is simply repeated until dawn,

weather permitting.
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Contingency - Target Not Found When the telescope slews to a target,

especially one far from its previous pointing, the new target may not fall within

the guide CCD’s field-of-view. The observer’s first response is to attempt to locate

the target manually by nudging the telescope using the hand paddle. If this fails,

the observer may point the telescope at a nearby bright star, synch the telescope’s

new coordinates in MaxIm DL, and slew to the target again. While not guaranteed

to work, this method has been successful in practice. Were it to fail, the observer

could either synch the telescope on another bright star, or simply move on to a

new target.

Contingency - Telescope Control System Reboot Occasionally, TCS may

crash and have to be restarted. When TCS starts, it assumes the telescope is

pointed at zenith, which may not be the case after a crash. To solve the problem,

a five-degree field-of-view camera is installed on the telescope. It can acquire an

image containing a number of stars, which the observer can then submit to plate-

solving software such as Astrometry.net. Plate solving measures the positions and

intensities of stars in an image, then compares them to a database of astronomical

objects. A successful plate solve determines the sky coordinates of the center of

the image, allowing the observer to synch the telescope coordinates in TheSky and

resume normal observing. Astrometry.net has been consistently successful when

given a five-degree image. However, should successive plate solves fail, the observer

will have to drive to DSO and reorient the telescope in person.

Contingency - Inclement Weather Protecting the observatory equipment

is a high priority and takes precedence over finishing observations on a target.
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The weather display on the observatory computers provides information about

temperature, humidity, wind, precipitation, cloud cover, etc. Its default behavior

is to instruct TCS automatically to close the observatory dome, should conditions

warrant it. This control may be disabled if the observer suspects that the sensor

readings are spurious. For example, the cloud monitor occasionally detects brief

spikes from clear to very cloudy weather. Each spike lasts only a few seconds, but

the unusual behavior may repeat for a minute or more. Closing and opening the

dome each take roughly 30 seconds, but TCS will attempt to close the dome for

every spike. Thus quite a bit of time can be lost to a malfunctioning cloud sensor.

If weather legitimately dictates that the telescope close during the night, the

observer may use the opportunity to obtain more dark and bias calibration images.

However little else can be accomplished until the weather is sufficiently clear to

allow observations to resume. In addition to high light levels, i.e., daytime, specific

conditions requiring the dome to close include: temperature below 16◦F, when

the dome motors stop functioning properly; very cloudy sky; precipitation of any

kind; sustained wind or gusts above their specified limits; relative humidity above

its specified limit.

Observing Logs Periodically throughout the night, the observer makes notes

regarding hardware or software problems, unusual observations, changes in weather

conditions, etc. The nightly logs mainly help individual observers organize and

interpret their large quantities of data. There are no strict format requirements for

these logs. They may be consequently sparse in detail, since observers must write

their comments between performing other vital tasks.
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In addition to nightly individual logs, there is a long-term observing log in which

each observer makes a brief entry after shutting down the telescope in the morning.

This log describes any significant problems encountered during the night. Thus all

observatory users can be informed of any restrictions on their normal observing

routines, without having to discover the same issues themselves.

3.2.3 Dawn

At morning nautical twilight, the observer ceases regular observations to perform

end-of-night procedures. The observer closes the dome, acquires darks and lamp

flats, and parks the telescope at zenith. Rapid warming can damage the CCD, so

the CCD cooler control has ‘warm-up’ functionality. This allows the CCD to warm

slowly to ambient temperature, without incurring damage. Finally, the observer

‘zips’ and compresses the night’s data using a software archiving program, then

initiates a file transfer to a computer on campus, and writes a short entry in

the long-term observatory log. This concludes the normal spectroscopic observing

procedure.



Chapter 4

RoboticSpectroscopist

4.1 Motivation and Basic Functionality

The main goal of automating the Dark Sky Observatory’s 32-inch telescope was

to make nighttime observing schedules as compatible as possible with daytime

academic schedules, but with corollary improvements in observing efficiency and

data quality, as mentioned in §2.2. The telescope’s primary users are university

faculty, who cannot adjust their academic schedules every week to accommodate

assigned telescope time. In addition, a robotic systems makes queue-based observ-

ing programs possible, and ensures that variable objects are observed sufficiently

often.

To accomplish these goals, we designed and wrote a computer program, now

called RoboticSpectroscopist (RoboSpec), to emulate a human observer. Fortu-

nately, the normal observing procedure described in Chapter 3 has a well-defined,

repetitive structure. In addition, since the entire observing process can be con-

31
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trolled remotely, no elements of that process require manual actuation. Thus the

hardware and software systems installed at DSO adhered to the criteria proposed

by Ramsey (1992), suggesting they were suitable for robotic operation.

Unobtrusive Design Principal An important tenet in RoboSpec’s operation

was that it be as unobtrusive as possible to existing observatory systems. Though

the Windows 7 operating system installed at DSO embraces ‘parallel’ processing,

and ‘simultaneous’ operation of numerous programs, they are not exactly parallel

or simultaneous. Rather, the operating system switches rapidly between programs,

allowing each to perform a number of tasks before allocating resources to the next

queued program. Each additional piece of software requires time in the queue,

effectively slowing the operation of the entire system. This description does not

portray the complexity of task scheduling that the operating system performs, but

aims to explain our attention to resource usage.

Also of concern were file access conflicts. Windows often denies access to a file

that is already open in another program. This restriction prevents simultaneous

changes to a file being saved, thereby rendering it unintelligible and useless. A

single computer will rarely encounter this problem, but multiple computers may

when sharing data over a network, such as those at DSO8. In particular, our

weather-monitoring software reads a text file updated roughly every two seconds.

We were concerned about crashing the weather hardware by reading and denying

access to the text file, while the sensor simultaneously tries to write to it.

8Pyle, N. 2009, Microsoft Corporation, ‘Understanding (the Lack of) Distributed
File Locking in DFSR,’ https://blogs.technet.microsoft.com/askds/2009/02/20/

understanding-the-lack-of-distributed-file-locking-in-dfsr/

https://blogs.technet.microsoft.com/askds/2009/02/20/understanding-the-lack-of-distributed-file-locking-in-dfsr/
https://blogs.technet.microsoft.com/askds/2009/02/20/understanding-the-lack-of-distributed-file-locking-in-dfsr/
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Fortunately, Windows 7 favors the New Technology File System (NTFS) de-

veloped by Microsoft9. NTFS allows multiple programs to access the same file in

read-only mode, but allows only a single write-permission access10. No part of this

automation project requires more than a single write-permission access to a file,

so no conflicts have arisen.

Target Acquisition The first significant challenge while designing RoboSpec

was target acquisition, namely locating and centering a target star on the spectro-

graph slit. A human may interpret a telescope image as a dark field with a several

stars, each star’s brightness decreasing smoothly and radially. But a computer in-

terprets the same image only as a two-dimensional array of discrete numbers. From

such an image, RoboSpec must be able to identify the location of a star’s center,

while ignoring bright cosmic rays and other noise.

Even during manual observing, the narrow field-of-view of the guide CCD cam-

era occasionally made target acquisition difficult. To prevent RoboSpec from search-

ing indefinitely for a target it failed to locate on its first try, the East Port CCD

camera was installed. It has a large enough field-of-view to contain the target af-

ter even a large telescope slew. A program called TCP Camera3 processes the East

Port image, and returns the pixel coordinates of the brightest object to RoboSpec.

Following a short jog to bring the telescope closer to the desired coordinates,

RoboSpec returns to the guide camera to more precisely center the target on the

9Microsoft 2016, ‘Comparing NTFS and FAT32 File Systems,’ http://windows.microsoft.
com/en-us/windows7/comparing-ntfs-and-fat32-file-systems

10HairyFool 2013, Microsoft Community, ‘Does Windows 7 file sharing allow si-
multaneous multiple user record updates,’ http://answers.microsoft.com/en-us/

windows/forum/windows_7-files/does-windows-7-file-sharing-allow-simultaneous/

e6e3b954-96b7-4612-b8bc-1d31d8d14296?auth=1

http://windows.microsoft.com/en-us/windows7/comparing-ntfs-and-fat32-file-systems
http://windows.microsoft.com/en-us/windows7/comparing-ntfs-and-fat32-file-systems
http://answers.microsoft.com/en-us/windows/forum/windows_7-files/does-windows-7-file-sharing-allow-simultaneous/e6e3b954-96b7-4612-b8bc-1d31d8d14296?auth=1
http://answers.microsoft.com/en-us/windows/forum/windows_7-files/does-windows-7-file-sharing-allow-simultaneous/e6e3b954-96b7-4612-b8bc-1d31d8d14296?auth=1
http://answers.microsoft.com/en-us/windows/forum/windows_7-files/does-windows-7-file-sharing-allow-simultaneous/e6e3b954-96b7-4612-b8bc-1d31d8d14296?auth=1
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spectrograph slit. The East Port camera is described in §4.2, and TCP Camera3 and

the image processing procedure are described in §4.3 below. The final centering

of a star on the spectrograph slit relies on a C program called starfind3, also

described in §4.3.

This has proven to be a robust method of automatic target acquisition. How-

ever, it is limited to locating only the brightest star in the nearby field. Observers

may have targets that are fainter than their neighbors. To observe such objects,

RoboSpec will have to perform a plate solve on the East Port image. This func-

tionality has not yet been incorporated into RoboSpec’s operation, but is coming

in the near future.

Observatory Safety The second significant challenge was to program ‘intel-

ligence’ into RoboSpec. The telescope and attached instruments are expensive,

fragile, and difficult to replace. Any use of the observatory, whether by a human or

robotic observer, must respect physical limits of hardware, handle errors generated

by software, and monitor weather conditions. The RoboSpec script itself does not

interact with any weather sensors. The decision to continue or cease observations

due to weather is handled entirely by RoboticWeatherman, a separate script that

is the subject of Chapter 5.

Respect for the physical limits of the observatory is handled by other scripts as

well. An example is the positional limit for the telescope while tracking is enabled.

The physical tracking limits fall around hour angle (HA) of positive and negative

five. The local meridian, the line from the north to the south celestial pole and

passing directly overhead, is defined as HA zero. An object with HA negative one
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hour will pass overhead in one hour; an object with HA positive 30 minutes passed

overhead 30 minutes prior. To avoid the telescope’s physical HA limits, RoboSpec’s

target selection logic ignores any object with HA more than two and a half hours

from the meridian.

RoboSpec will never be capable of solving every problem that could occur during

observing, so there is a built-in ‘Safe Mode’ that closes the observatory dome,

disables tracking, and notifies the user via text message of an error. For some

minor problems with simple and reliable solutions, Safe Mode is unnecessary. But

more serious problems such as unsuccessful target acquisition, the GAM failing

to reach its instructed position, a power outage, a local network disconnection, or

TCS crashing require the attention, and often the physical presence, of a human.

Target Selection Efficiency is another aspect of robotic intelligence in which

we sought to emulate a human observer. RoboSpec should be able to evaluate a

list of desired target stars and choose the most appropriate one to observe next.

It searches typically for stars that are near the meridian, but ultimately chooses a

target based on a number of criteria, discussed in more depth in §4.4.4 below.

With target selection and acquisition programmed, and safety measures in place

to protect the observatory, the process of developing RoboSpec was straightfor-

ward. It involved combining small single-function programs, some trial-and-error

solutions, and substantial trouble-shooting. The remainder of this chapter is ded-

icated to a description of the hardware, software, and communication methods

RoboSpec uses.
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4.2 Hardware

A notable early concern for RoboSpec was establishing stable communication

and coordination with the hardware and software systems already in place at

DSO, while introducing as few changes as possible to those systems. To that end,

we chose to write RoboSpec in the AutoIt programming language. From the pro-

gram website: “AutoIt...is a freeware BASIC-like scripting language designed for

automating the Windows GUI and general scripting. It uses a combination of sim-

ulated keystrokes, mouse movement and window/control manipulation in order to

automate tasks in a way not possible or reliable with other languages”11. It was

thus a reasonable platform for our program, to make an observer’s interaction with

the robotic system minimal and straightforward.

AutoIt also handles communication between the existing hardware and software

systems with surprisingly few problems. RoboSpec must communicate via TCP/IP,

X-10, web switches, and external software ‘hooks’ on various control programs, and

AutoIt has proven capable of using all those protocols. The following paragraphs

detail the hardware and software systems installed at DSO, the purpose, imple-

mentation, and challenges of each, and how RoboSpec communicates with them.

Computers All DSO computers are connected to a local network, simplifying

communication between them. The control room for the 32-inch telescope contains

three computers used in the observing process. The first is the DSO-Data com-

puter, which is home to software including RoboSpec, MaxIm DL 6, and TheSky.

11AutoIt Consulting Ltd 2015, ‘AutoIt,’ https://www.autoitscript.com/site/autoit/

https://www.autoitscript.com/site/autoit/
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Since MaxIm DL controls the main CCD and guide CCD cameras, images from

those cameras are saved to DSO-Data. During manual observing, most user inter-

action occurs with this machine.

The second computer is DSO-TCS, and handles commands to the Telescope

Control System introduced in §3.1. It receives instructions from DSO-Data via

ethernet Transmission Control Protocol/Internet Protocol (TCP/IP) socket con-

nections.

The third computer is DSO-X10, which handles communication with the X-

10 controller, and with MaxIm DL 5 operating the East Port camera. Like the

TCS computer, it receives commands from DSO-Data via TCP/IP socket. It is

connected directly to the X-10 controller, and contains Activehome software for

scripted control of X-10 devices. Activehome Command (ahcmd.exe) is provided

by X-10 and is installed on the DSO-X10 computer12.

During manual observing, the user also controls web switches from a webpage

on DSO-X10. Web power switches are provided by Digital Loggers and resem-

ble a power strip, containing eight remote-addressable switching outlets and two

non-switchable outlets. During automated observing, RoboSpec operates these

switches from DSO-Data via a local IP address and port number. RoboSpec passes

commands as arguments to uu.W32.exe, a program provided by Digital Log-

gers, the manufacturer of the web switch. Commands take the form “uu.W32.exe

123.456.0.789:10 username:password 5on” indicating in this case that switch 5 on

the web switch with IP address 123.456.0.789 should be turned on.

12X10.com 2015, ‘X-10 Basics,’ https://www.x10.com/x10-basics.html

https://www.x10.com/x10-basics.html
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Three other computers that are relevant to RoboSpec’s operation execute vari-

ous weather-monitoring procedures. However RoboSpec does not communicate di-

rectly with those machines; that task has been delegated to RoboticWeatherman,

described in Chapter 5. One such computer is DSO-Cloud32, which additionally

displays weather information on a computer monitor in the observatory control

room.

Telescope Mount; Observatory Dome; TCS The 32-inch telescope is a

Ritchey-Creitien reflecting telescope, and was built by DFM Engineering13. It sits

on a yoke equatorial mount, with one axis parallel to the earth’s rotation axis.

This configuration allows the telescope to match the sky’s rotation using a single

motor, in contrast to altitude-azimuth mounts that must rotate about two axes.

Any movement of the telescope mount is controlled by the telescope control

system (TCS). TCS was also built by DFM Engineering, and uses a proprietary

communication protocol outlined in its user manual. It must be connected to a

computer at the observatory, and commands are sent from that computer via se-

rial port communication or TCP/IP communication. Each command known to

TCS has a unique number, and additional arguments are also specified with nu-

meric values. For example, command 21 is the GUIDER command, which controls

the motion of the observatory dome. Sending “#21,0;” via TCP/IP connection

instructs TCS to have the dome opening track the telescope’s pointing.

Guide and Acquisition Module Attached behind the telescope’s primary mir-

ror is the guide and acquisition module (GAM). It houses an angled mirror on a

13Caton 2016, http://dso.appstate.edu/facilities/32-inch-telescope

http://dso.appstate.edu/facilities/32-inch-telescope
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translation stage, capable of directing light from the telescope’s secondary mirror

out one of several ports. Its purpose is to allow multiple instruments to be con-

nected to the telescope simultaneously, and accessed quickly and easily. Moving

the GAM mirror to a new position is controlled with a command to TCS, and

takes about 30 seconds.

A separate TCS command queries the GAM for its status, corresponding to

its position; that status is updated once the GAM successfully reaches its new

position. However, the mirror occasionally fails to reach the position specified

in the movement command. The error can be identified by querying the GAM’s

position and receiving its previous position. In most cases, repeating the TCS

command is sufficient to complete the movement, but requires another 30 second

delay before querying the GAM’s position again.

The instruments that remain attached to the GAM are the East Port CCD cam-

era described below and the arc lamp described in §3.2.2. The East Port camera is

attached to the GAM east port. The arc lamp is affixed to the bottom of the GAM

and passes light through a hole in the device housing, but does require that the

translating mirror be in a certain position. Other instruments attached to the GAM

depend on the type of observing to be performed. For photometry, an imaging CCD

camera and filter wheel are attached. For spectroscopy, the GM Spectrograph and

a different CCD camera are fitted in place of the filter wheel/CCD combination.

Both attach to the direct cassegrain port of the GAM, which serves as a straight

pass-through for light coming from the telescope’s secondary mirror.
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Building Lights; Dome, Telescope, & Tracking Power The observatory

building has a number of electrical systems that can be controlled using X-10

communication protocol. The observatory’s X-10 controller sends commands over

the electrical wiring itself12. Each receiver has its own address, and ignores com-

mands sent to any other address. To communicate a command, the controller first

sends the receiver’s address, then the command to be executed.

RoboSpec communicates with TCP Camera3 on the X-10 computer using a TCP/IP

connection. For example, to turn off dome lights, RoboSpec sends command “2,3”

over a TCP/IP socket. The command is received by TCP Camera3 and relayed to

the physical X-10 controller installed at the observatory. X-10 communication is

slow; commands are sent directly over existing electrical wiring, and are synchro-

nized with the standard 60Hz AC power line signal. Each single command requires

at least 25 power line cycles. Thus most commands are transmitted over roughly

half a second (Rye, 2015). Fortunately X-10 devices are used infrequently during

observation, so communication speed is of little concern.

X-10 devices installed at DSO are the lights inside the telescope dome, as well as

relays connecting power to the motors controlling motion of the telescope mount

and dome. During the normal observing procedure, they are appropriately deacti-

vated or activated by RoboSpec at the beginning of the night and at dawn.

Comparison Lamp & Solenoid As mentioned above, the comparison arc lamp

is powered with a web switch. The lamp’s housing has an aperture that serves as

a dust cover, and must be opened before a comparison spectrum can be acquired.

The housing is attached to a solenoid, also powered by a web switch.
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CCDs & Spectrograph The main spectroscopy CCD is an Andor Apogee de-

vice, and is mounted on the spectrograph. The East Port and guide CCD cameras

were built by Santa Barbara Instrument Group (SBIG), a division of Diffraction

Limited14. The guide CCD is mounted on the north port of the GAM, and has a

40x30 arc-second field of view. It images light reflected off the spectrograph slit

mask.

The third CCD is the East Port camera, which was installed most recently. It

is mounted on the east port of the GAM, and has a field of view of roughly 4x5

arc-minutes, substantially wider than the guide CCD. As mentioned in §4.1, it

allows RoboSpec to acquire targets reliably. All three CCD cameras are controlled

by MaxIm DL, a program developed and provided by Diffraction Limited.

4.3 Software

RoboSpec Executable File The latest version of RoboSpec is found on the

Desktop of the DSO-Data computer, and is a compiled Windows executable file.

AutoIt scripts can be run without being compiled; the standard AutoIt down-

loadable package includes an interpreter that will run scripts without compilation.

However, compiling RoboSpec provides several advantages, the most apparent of

which is a Windows executable file. Even without any astronomy background,

locating and running RoboSpec will be familiar to anyone with experience using

Microsoft Windows.

14Diffraction Limited 2016, http://www.cyanogen.com/

http://www.cyanogen.com/
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Efficiency is another benefit; the compiled program uses fewer computer re-

sources while running than does an interpreted script. We have not encountered

any related issues with the current version of RoboSpec. But DSO-Data hosts

TheSky and MaxIm DL, both of which are vital to telescope operation. Running a

compiled executable, which requires less processing power, is in line with our design

principal of being as unobtrusive as possible to existing observatory systems.

Compilation also provides a level of security. AutoIt scripts can be opened and

altered in any text editor. Doing so would almost certainly prevent the script

from operating properly, if at all. But the compiled executable cannot be so easily

edited. RoboSpec also includes IP addresses, usernames, and passwords that are

required to perform various observing tasks. Compiling the AutoIt script prevents

these private data from being accessed.

MaxIm DL 6 A single instance of MaxIm DL Version 6 controls the main

CCD and guide CCD. The program displays its own GUI when executed, but

can also be addressed by a script such as RoboSpec. Scripting MaxIm DL is

done through ActiveX, and is compliant with the Astronomy Common Object

Model (ASCOM) standard for instrument control15. The ASCOM platform al-

lows “vendor-independent and language-independent plug-and-play compatibility

between astronomy software and astronomical instruments on Windows comput-

ers”16

15MaxIm DL 2016, Scripting, MaxIm DL Version 6 User Manual, ‘Introduction to MaxIm
DL,’ http://www.cyanogen.com/help/maximdl/MaxIm-DL.htm

16ASCOM Standards for Astronomy, ‘About the ASCOM Initiative,’ http:

//ascom-standards.org/About/Index.htm

http://www.cyanogen.com/help/maximdl/MaxIm-DL.htm
http://ascom-standards.org/About/Index.htm
http://ascom-standards.org/About/Index.htm
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A limitation of MaxIm DL is its inability to operate more than two cameras.

However that was not a concern at DSO until the East Port camera was installed for

this automation project. At that time, we explored several other software options

for camera control, hoping simply to operate the East Port camera using a separate

program on DSO-Data. However, we discovered that three cameras cannot be

controlled from the same computer, even using different software.

TCP Camera3 Rather than delve into the problem too deeply, we opted to

control the East Port camera from an instance of MaxIm DL Version 5 on the

DSO-X10 computer. When RoboSpec begins observing, it attempts to open a TCP

connection to the script TCP Camera3. Thus the user must already have manually

started TCP Camera3 on DSO-X10. Its initial purpose was to receive instructions

for the East Port camera from RoboSpec and relay them to MaxIm DL 5. But

once the scripts necessary to communicate with the X-10 controller via software

were functional, they were integrated into TCP Camera3 as well.

We also discovered that sending an image acquired by the East Port camera

over TCP/IP connection, or even through a shared local network location, was

slow compared to RoboSpec’s normal operation. In the interest of efficiency, the

responsibility of analyzing East Port images was delegated to TCP Camera3. The

process of acquiring and analyzing an East Port image and returning the desired

coordinates to RoboSpec requires a matter of seconds, rather than the minutes it

could take to transfer the image.

When plate solving is integrated into RoboSpec, a future version of TCP Camera3

will perform that function as well. RoboSpec will send the RA/Dec sky coordinates
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of the desired object to TCP Camera3, which will then acquire an East Port image.

It will pass the image to a local copy of Astrometry.net, receiving in return the

RA/Dec coordinates of the center of the image. Knowing the pixel scale of the East

Port image, TCP Camera3 will then calculate the pixel coordinates of the desired

object, and return those values to RoboSpec. As mentioned in §4.1, plate solving

will be necessary when attempting to observe stars that are not the brightest

object in the nearby field.

It was necessary to incorporate ‘handshaking’ into the communication between

RoboSpec and TCP Camera3. For example, RoboSpec may wish the close the TCP/IP

connection. Before doing so, it sends TCP Camera3 a ‘Listen’ command, indicat-

ing that it should also resume listening on that port for for new instructions from

RoboSpec. Otherwise TCP Camera3 ceases listening on the port as soon as RoboSpec

disconnects, and ignores any further instructions.

Guiding Another concern was MaxIm DL’s telescope guiding algorithm. It was

designed to keep a single bright object at the same place on a telescope’s CCD.

But the guide camera on the 32-inch telescope receives light reflected off the spec-

trograph slit mask, producing a bright object with a dark bar across it. It ap-

pears as two adjacent bright objects, a geometry MaxIm DL was not specifically

programmed to interpret. Nonetheless, its standard guiding method has proven

reliable, and so was not modified or replaced for RoboSpec.

TheSky TheSky contains a catalog of astronomical objects, and can send AS-

COM commands if desired. Since TCS uses its own proprietary command library,
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ThySky’s ASCOM functionality is not used at DSO. However the normal observing

procedure does use TheSky for the majority of telescope control.

RoboSpec creates two ActiveX connections to TheSky. One allows queries to

and responses from TheSky’s object catalog, primarily containing high-precision

RA/Dec coordinates for targets. The other connection communicates instructions

to TheSky to execute various telescope commands, such as Jog and Slew17. TheSky

then relays those movement commands to TCS.

Observers may find that a few of the objects on their target list do not exist

in TheSky’s object catalog. In that case, when RoboSpec queries TheSky for the

target’s coordinates, it receives both RA and Dec coordinates of identically 0◦.

For RoboSpec to attempt to observe the object, the observer must have provided

high-precision RA/Dec coordinates on the target list, rather than the normal low-

precision coordinates used during target selection. If sufficiently-precise coordinates

are available, RoboSpec will attempt to observe the object; otherwise it will be

ignored and a new target chosen.

Cygwin AutoIt is a higher-level programming language than ANSI-C. Though it

is easy to use and well-suited to GUI creation and communication between devices,

it is comparatively sluggish when performing image analysis or mathematically

intensive calculations. RoboSpec must occasionally locate a star in an image, or

determine the local sidereal time. For such applications, the ability to execute a

simple program written in C is desirable. Standard installations of the Microsoft

17Software Bisque, Inc 2016, ‘Script TheSkyX,’ http://www.bisque.com/scripttheskyx/

index.html

http://www.bisque.com/scripttheskyx/index.html
http://www.bisque.com/scripttheskyx/index.html
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Windows operating system contain no C compiler, so Cygwin is used. Cygwin is “a

large collection of GNU and Open Source tools which provide functionality similar

to a Linux distribution on Windows”18.

A particularly useful feature of Cygwin is its ability to create Windows exe-

cutable files when compiling a C program. Thus the compiled program becomes a

standalone executable, and Cygwin need not be installed on the computer running

said program. Having an executable also prevents inadvertent modification of the

program code, as with RoboSpec itself; the executable cannot easily be edited after

compilation. In addition, it runs significantly faster than an interpreted program,

such as the same algorithm written in AutoIt.

NewTwilight & SiderealTime RoboSpec makes use of several C programs

during normal observing. The first executed during the night is called newtwilight,

and returns the times of evening and morning nautical twilight. Another script

called siderealtime returns the local sidereal time (LST), which corresponds to

the RA coordinate of astronomical objects on the local meridian. RoboSpec at-

tempts to observe targets as close to the meridian as possible, and thus prioritizes

targets with RA nearest the local sidereal time. The difference between an object’s

RA and the LST is identical to the object’s hour angle, mentioned in §4.1.

StarFind3 A third program called starfind3 analyzes the most recently-acquired

image from the guide CCD camera, and returns the coordinates of the brightest

star in that field. Retrieving the guide image requires a second ActiveX connection

to MaxIm DL. The image is saved in an unusual format, perhaps due to an expec-

18Red Hat, Inc. 2015, ‘Cygwin,’ https://www.cygwin.com/

https://www.cygwin.com/
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tation that observers won’t care to use the guide image themselves. However once

it is found, starfind3 allows RoboSpec to calculate the adjustment to telescope

pointing required to place the star on the spectrograph slit.

The algorithm starfind3 implements is fairly simple. It first creates two arrays

of values by ‘collapsing’ the image horizontally (by summing each row) and ver-

tically (by summing each column). Each array is then smoothed with a ‘boxcar,’

which averages each element with several adjacent elements. The script then scans

each array for the highest value, and returns those pixel numbers as the horizontal

and vertical coordinates of the star. This works quite well for the guide camera im-

age, even when the image contains multiple stars, as long as the target of interest

is the brightest object.

Another vital task, namely updating the coordinates of the spectrograph slit,

is also the responsibility of starfind3. Since the GM Spectrograph is mounted

to the telescope rather than bench-mounted, it experiences mechanical flexure as

the telescope pointing changes. The coordinates of the spectrograph slit can vary

by as much as five pixels. Some targets may not be even five pixels in diameter,

so knowing an accurate slit location is essential. Fortunately, determining those

coordinates is a simple task.

Once starfind3 detects the star, it begins searching the vertical array for a

minimum between two peaks, indicating the spectrograph slit. It calculates the

average position of the two peaks, weighted by their heights. The result is the

estimated slit position, which it converts to an integer pixel number and returns
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to RoboSpec. This allows RoboSpec to update its vertical coordinate of the spec-

trograph slit and maintain accurate pointing.

Image2xy Also useful for identifying stars using the East Port camera is a C

program available from Astrometry.net called image2xy. TCP Camera3 makes use of

a locally-installed version, although Astrometry.net functionality can be accessed

by uploading an image to an internet server. By itself, image2xy attempts to

identify star-like sources in an image, while ignoring cosmic rays. It returns a list

of pixel coordinates of probable sources and the estimated brightness of each. A

custom C program called findbright invokes image2xy, searches the output list

for the brightest object, and returns its coordinates to TCP Camera3.

SNSpectra A newer feature to RoboSpec is an estimate of the number of counts,

corresponding to the amount of light, received in a certain wavelength region of

acquired spectra. The calculation is handled by the C program SNspectra. It first

sums a specific range of pixel values in the violet region of the spectrum. It then

estimates the background counts by summing an equal-sized range away from the

spectrum. Finally it subtracts the background counts from the violet-region counts,

then divides by the number of pixel columns in the sum. The result is an estimate

of counts per pixel along the dispersion direction of the spectrograph.

RoboSpec can use a target’s aggregate counts to optimize its use of time. Each

target starts at zero counts, with each new exposure adding to the total as calcu-

lated by SNSpectra. If the user’s research requires a certain minimum number of

counts per object, RoboSpec can attempt to observe each target until that thresh-

old is reached, or it reaches some maximum number of exposures. This flexibility
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eliminates extraneous observations during excellent weather conditions, and im-

proves data consistency in light of less-favorable conditions.

Email Text Message Notifications Included in RoboSpec are several func-

tions that send automated emails to the user assigned to the telescope. They use

Simple Mail Transfer Protocol (SMTP), and require an existing email address19.

Every cell phone has a unique email address, and receives emails sent to that

address as text messages. Thus RoboSpec can notify a sleeping user of hardware

problems.

Automatic File Transfer Just as a human observer does after a night of man-

ual observing, RoboSpec compresses the night’s data and sends it to the user’s

personal computer. UNIX commands TAR and GZIP are executed on Windows

via Cygwin. The TAR command archives the desired images into a single file, then

GZIP compresses them to allow for faster download. File transfer is performed us-

ing WinSCP, which is scripted for automatic operation through its COM library.

Ideally, data will be present on campus by the time the user arrives in the

morning. An automatic data reduction pipeline will eventually be implemented as

well, and will provide the user with reduced data by late morning. That will allow

the user to adjust the target list for the following night, should any targets warrant

immediate repeated observation.

19Postel, J.B. 1982, The Internet Engineering Task Force, ‘Simple Mail Transfer Protocol,’
https://www.ietf.org/rfc/rfc821.txt

https://www.ietf.org/rfc/rfc821.txt
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4.4 GUI Control and Normal Operation

RoboSpec started as a simple program. As it gained functionality, it necessarily

began to require more information from the user. To prevent filling too much of

the available screen space on the DSO-Data computer monitor, we have created a

tabbed GUI for RoboSpec, shown in Figures 4.1, 4.2, and 4.3. Its three tabs are

described individually below, in the context of the normal procedure required to

prepare and carry out a night of automated spectroscopy.

4.4.1 User Tab

Figure 4.1: User tab of RoboticSpectroscopist, where the user may select an existing
profile, or create a new one.
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An observer may run the RoboSpec executable file at any time during the day

preceding a night of observing. This allows e.g., faculty with late afternoon meet-

ings to provide RoboSpec with all the required information, click ‘Begin Observ-

ing,’ and let the script operate until morning. This convenience is contingent on

the spectroscopy equipment already being installed on the telescope, which is often

the case due to consecutive nights being allocated to astronomical spectroscopists.

Existing User RoboSpec initially displays the ‘User’ tab shown in Figure 4.1,

the data boxes filled with example values. A drop-down combobox lists the user

preference files, or profiles, that RoboSpec was able to identify. If the user’s profile

exists, selecting it in the combobox will automatically load that profile and fill

in the appropriate data boxes. The data boxes will also be enabled for editing,

should an existing user want to save images to a different directory, for example.

Any changes will be temporary; to make permanent changes, the user must create

a new profile with a different name, or edit the profile text file manually.

Selecting an existing user also enables the ‘Test’ button and the two ‘Browse’

buttons. The Test button sends a sample text message to the email address in

the ‘Cell Phone Email Address’ box, to verify delivery of notifications messages.

RoboSpec uses this feature to notify the user of problems it cannot solve without

human intervention, such as the GAM being mechanically stuck or TCS having

crashed.

The Browse buttons behave as expected of the Windows operating system. The

button next to the ‘Path to Target List’ data box presents the user with a familiar

‘Open File’ dialog box. The user may then select a single file and click ‘OK,’
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returning that file’s path to RoboSpec. The button next to the ‘Directory for

Saving Images’ data box presents a similar Open File dialog box, but requires the

user to select a directory rather than a file.

New User If DSO is hosting a visiting observer, he or she likely will not have

a RoboSpec user profile. For that purpose, the Select User combobox includes a

‘new’ option. Selecting it enables all the buttons on the User tab, including the

‘Save New’ button, and clears all the data boxes. The new user may then fill in the

data boxes as appropriate, and click the Save New button to create a profile text

file. The created profile will appear immediately in the combobox, under whatever

text was entered into the ‘Name’ field.

Should there be a problem with the information in one of the data boxes when

the user clicks Save New, RoboSpec will display a Message Box indicating which

field or fields caused the error, and what the error was. Errors include: any fields

left blank; name already taken; target list nonexistent; directory for saving images

not found. When the user has resolved each displayed error, the profile will save

successfully, and the Status bar at the bottom of the GUI will display a confirma-

tion message.

Loading or creating a user profile is currently the entire purpose of the User

tab. The tab may seem somewhat empty, but extra space is left for controls to be

added in the future. For example, the FTP information required for automatic file

archival and transfer is hard-coded into RoboSpec, and is not part of each user’s

profile. Should the script be made capable of transferring archived images to any
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user, the necessary inputs will be added to the tab. But at present, once a profile

is loaded or created, the user may move on to the Startup tab.

4.4.2 Startup Tab

Figure 4.2: Startup tab of RoboticSpectroscopist, which includes beginning-of-night
checklist items. RoboSpec will not begin its normal observing procedure until all items
are checked.

The GUI ‘Startup’ tab includes a checklist of beginning-of-night startup tasks

required for spectroscopy, shown in Figure 4.2. Experienced observers will not

need the list, but it may be a good reference for unfamiliar users while installing

hardware and starting software. As each item is completed, the user may check the
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box next to it. RoboSpec takes no action regarding the checkboxes until attempting

to begin observing.

As a precaution, RoboSpec prevents the user from initiating observations with-

out checking the box next to every item on the list. Some items RoboSpec could

not detect immediately, such as ‘Dome Motor Power On.’ Others, like ‘Loaded

Appropriate User Profile,’ it would never detect. As a convenience to experienced

users, a ‘Select All’ button is included, which checks all the boxes at once. However,

it is good practice to verify each item manually.

Hardware RoboSpec’s startup checklist includes four hardware items, the first

being ‘Spectrograph Installed.’ If the spectrograph is not already attached to the

telescope, the user must carefully remove and store the photometry CCD and filter

wheel, install the spectrograph, and rebalance the telescope.

The second hardware item is the rebalancing of the telescope. With the spec-

trograph attached, the telescope’s center of mass is different than when the CCD

and filter wheel are attached. Unless the telescope’s center of mass coincides with

its axis of rotation, the mount motors are incapable of raising it. Thus to coun-

terbalance different instruments, a sliding weight is mounted on the side of the

telescope. After installing the spectrograph, the user must adjust this weight to

the position prescribed to rebalance the telescope.

The third and fourth hardware items are power connections for the dome motor

and telescope motor. Both are controlled with X-10 switches from the DSO-X10

computer. RoboSpec could be made to click the buttons automatically; AutoIt
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includes the ability to effect mouse clicks at any given location on the computer

screen. However, a more reliable solution is to allow RoboSpec to interface with the

Activehome Command X-10 control software installed on DSO-X10, and activate

these switches automatically. Manual verification is nevertheless left to the user;

observing would be impossible without the telescope and dome being powered.

Software There are currently six software items on RoboSpec’s startup checklist.

The first asks the user to verify having loaded the correct user profile, or having

successfully created a new profile. The three subsequent items require verification

of each piece of information in the profile. An accurate cell phone email address

prevents a non-assigned user from receiving text messages regarding RoboSpec’s

operation in the middle of the night. Without a valid target list, RoboSpec cannot

observe at all. And without a valid directory for saving images, the night’s data

could be hidden somewhere on the computer, or lost entirely.

The fifth software item is for connecting the East Port CCD camera, which

RoboSpec uses to acquire a target. Without it, the telescope’s pointing is insuffi-

cient to place most objects within the guide camera’s field-of-view. The sixth item

relates to the East Port camera, and asks the user to start TCP Camera3 manu-

ally on DSO-X10. This is the software that receives and executes X-10 and East

Port commands from RoboSpec. Without TCP Camera3 running, RoboSpec cannot

control X-10 devices or the East Port camera. Like with the dome and telescope

motor power, executing TCP Camera3 automatically might be possible, but takes

only a few seconds manually.
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When the user has performed all the tasks listed on the Startup tab, and has

checked the box next to each, the observatory will nearly be ready for automated

observing. The few remaining tasks are found on the Observing tab.

4.4.3 Observing Tab

Figure 4.3: Observing tab of RoboticSpectroscopist, containing most of the controls
and indicators necessary to adjust automated observations.

The final tab on the RoboSpec GUI is the ‘Observing’ tab. It contains indicators

a user might want to see while RoboSpec operates, as well as controls used to

begin, abort, and modify observations.
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Target Acquisition Control Unlike the East Port camera, which is installed

indefinitely on the GAM, the spectrograph is reinstalled after photometry observ-

ing. Doing so changes the path of light from the telescope through the instruments.

Consequently, the user must make minute adjustments to the position of the guide

CCD camera, to center the spectrograph slit in guide images. Since the user makes

these adjustments by hand, the pixel coordinates of the slit center generally are

not the same as after the previous installation.

RoboSpec needs those coordinates to properly place a target on the slit. There-

fore after installing and adjusting the spectrograph, the user must acquire an image

from the guide camera, find the pixel coordinates of the slit center, and enter those

values into the ‘Slit Coordinates’ boxes in the Target Acquisition group.

The uppermost data boxes in the Target Acquisition Control group are for the

‘East Port Star Pixel’ coordinates. They correspond to the location of a star in

an East Port image, when it is centered on the spectrograph slit as seen in the

guide image. RoboSpec uses those coordinates during target acquisition to position

a star near to the slit.

To determine the East Port Star Pixel coordinates, the user must first install and

adjust the spectrograph as described above. Next, the telescope must be pointed

at a bright star, the star placed on the slit, and telescope tracking and guiding

enabled. The user should then acquire an East Port image and identify the pixel

coordinates of the star’s approximate center. Those are the values to be entered

into the East Port Star Pixel data boxes.
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Exposure Control The Exposure Control group contains criteria dictating the

number of exposures RoboSpec should take on a single target. The ‘Min # Ex-

posures’ and ‘Max # Exposures’ indicate the minimum and maximum number of

exposures, respectively, that the user will allow for any given target.

The ‘Expose to Target Counts’ checkbox instructs RoboSpec to continue acquir-

ing spectra of a target, until the ‘Total Counts’ estimated by SNSpectra reaches

the value in the ‘Target Counts’ data box. However the limit imposed by Max

# Exposures takes precedence over Exposure to Target Counts, and will force

RoboSpec to move on to its next target.

Observing Control Observing Control contains modifications to RoboSpec’s

normal observing procedure. When implemented, the ‘Auto Start’ checkbox will

be particularly useful for busy observers, who may not have time to locate the

pixel values for Target Acquisition Control. Auto Start will instruct RoboSpec to

attempt automated identification of the East Port Star Pixel and Slit Coordinates.

Preliminary tests have shown Auto Start to be successful, when the spectrograph

is properly installed and adjusted.

Auto Start will have other necessary start-up tasks to perform as well, such as

starting and monitoring the CCD cooler. Selecting the Auto Start checkbox will

therefore enable the ‘CCD Temp (C)’ data box. There, the user may set the desired

temperature for the CCD cooler to maintain. If the cooler fails to reach the set

temperature, RoboSpec will notify the user that human intervention is required.
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The second checkbox, ‘Artificial Dawn,’ forces RoboSpec to terminate its regular

observing routine, perform end-of-night calibrations, and shut down. This feature is

useful when inclement weather arrives after a clear period, and the forecast shows

no improvement. Rather than let RoboSpec sit until dawn, needlessly checking

RoboticWeatherman’s output file for instruction, the user may select Artificial

Dawn and go to bed.

The ‘Force GAM Jog’ checkbox preempts the GAM failing to reach its position

after the first command, and sends a second command immediately after the first

completes. The process requires roughly 30 seconds extra, but may prevent the

GAM from becoming stuck and requiring human intervention.

Indicators Several indicators are included on the Observing tab to provide the

user with real-time information relevant to observation. ‘Start Time’ and ‘End

Time’ are calculated by newtwilight, and display the UTC times of evening and

morning nautical twilight, respectively. These are the times that RoboSpec will

start and stop spectroscopic observations, although it can perform calibrations

outside this window.

The ‘Weather Status’ indicator shows the most recent value RoboSpec receives

from RWeather; clear, partly cloudy, very cloudy, or precipitation. The ‘Dome

Status’ indicator shows the expected status of the observatory dome; open or

closed. No sensors are attached to the dome itself, so Dome Status updates when

a dome control command is sent to TCS. Verifying the accuracy of the displayed

status is left to the user; RoboSpec operates as if all commands are successful. We
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are not immediately concerned about this assumption; in 20 years of observing, a

dome command has been ignored once20.

The name of the target being observed is displayed by the ‘Current Object’ indi-

cator. This is the name sent to TheSky when querying high-precision coordinates.

Below it are ‘# Exps,’ indicating the number of spectrum exposures acquired for

the current target, and ‘Total Counts,’ indicating the estimated aggregate counts

in the spectra for that target. None of the Observing tab indicators are essential to

RoboSpec’s operation. However they provide the user some insight into RoboSpec’s

actions, such as pausing observation or moving unexpectedly to its next target.

Buttons There are three buttons on the Observing tab. The largest is the ‘Begin

Observing’ button. Clicking it will not always initiate observing immediately, as

RoboSpec requires that several conditions be met first. In particular, all checkbox

items on the Startup tab must be checked. If they are, RoboSpec will enter its main

loop, but will delay initial calibrations until some time before Start Time. If the

weather is clear when calibrations complete, RoboSpec will open the observatory

dome and begin its normal observing routine.

The ‘Abort’ button is an old feature of RoboSpec, but a new addition to the GUI.

Some of RoboSpec’s common actions, such as acquiring a five-minute exposure of

a star, prevent the GUI from responding to inputs for their duration. In fact,

inputs seem to be lost entirely if not received in a timely manner, with the longest

feasible delay determined experimentally to be about one second. This behavior

is a consequence of RoboSpec’s script-based rather than event-driven design. Thus

20Gray, R.O. 2016, Private communication
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an abort button on the GUI seemed infeasible, and was introduced as a standalone

script with its own GUI.

RoboSpec executed the old Abort script automatically when it initialized, then

read a single value from a text file at various points in its operation. Clicking the

button on the Abort GUI changed that value, signaling to RoboSpec that it should

abort its current action. It was a functional, albeit inelegant solution.

Fortunately, AutoIt provides a ‘push-like’ property for checkboxes. A push-like

checkbox appears as a button, but ‘latches’ when clicked. This behavior allowed

us to eliminate the Abort GUI, and instead have RoboSpec query the state of the

Abort button: unchecked or checked. In addition, the button remains operable even

during a long exposure. If the user hastily clicks the Abort button, then realizes

there is no reason to abort, clicking the button again before RoboSpec queries its

state will prevent an unnecessary interruption to observing.

The last control on the Observing tab is the ‘EXIT’ button. Clicking it closes

RoboSpec, but not before ensuring all connected systems are in an appropriate

state, and then closing those connections properly. When the user checks on

RoboSpec the morning after a night of observing, the observatory systems will

likely already be disconnected, and the program will be idling. In that case, the

EXIT button simply closes the script as expected.
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4.4.4 Necessary Files

Throughout its normal observing procedure, RoboSpec reads information from

several different text files, which have already been mentioned in the description

of its operation. More detail is provided in this section.

User Profile User preference files or profiles are intended to simplify the process

of preparing RoboSpec for observing. They contain basic user information that

will rarely change. The Directory for Saving Images is an exception; a separate

directory is generally created for each night of observing. Thus the user could save

the parent directory to the profile, then simply append the night’s directory name

as part of evening preparations.

Target List The user must provide RoboSpec with a list of targets to be ob-

served. RoboSpec invokes the DetermineObservable function to scan the list and

select the best candidates for observing. In addition to an object’s name, data

required on the target list are low precision RA/Dec coordinates, desired number

of exposures, and a user-determined priority level.

The low precision RA/Dec coordinates are used to calculate the object’s approx-

imate hour angle. As mentioned in §4.1, RoboSpec will not attempt to observe any

target more than two and a half hours from the local meridian. Rather than have

DetermineObservable query TheSky for high-precision RA/Dec coordinates of

every object on the target list, it uses low-precision values to produce a narrower

range of candidates.
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If Expose to Target Counts is not selected on the Observing tab, RoboSpec will

acquire as many exposures as are specified on the target list. It will ignore the

minimum and maximum number of exposures specified on the Observing tab, and

those input boxes will be disabled.

Finally, the user must provide a priority level for each object on the target list.

Possible values are 0 indicating ‘Don’t Observe,’ 1 indicating ‘Highest Priority,’

and 2 indicating ‘Lowest Priority.’ The ability to indicate Don’t Observe allows

the user to compile a long list including all objects desired for a particular research

project, then select a subset with non-zero priority flags. In addition, objects that

have been observed sufficiently may be removed from consideration by setting their

priority to zero.

The non-zero priority flags simply require RoboSpec to consider certain objects

before others. There has not yet been a need for more than two priority levels,

but such a system could be required for queue-based observing. With targets from

multiple users, a third value indicating ‘Highest Priority’ might be awarded to

whichever observer had been assigned telescope time on a given night. For example,

one user’s target list might contain objects that are less likely to be observed, e.g.,

simply based on their sky position. A Highest Priority would ensure that all users’

targets receive roughly equal consideration by RoboSpec. However RoboSpec is

not yet capable of queue-based observing, and so does not currently need a flag to

indicate user priority.

Weather Condition File As mentioned in §4.1, we have delegated the respon-

sibility of monitoring the weather to RoboticWeatherman. Communication be-
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tween that separate script and RoboSpec occurs through third text file, called

‘weather.txt.’ It contains a five-digit number, each digit providing information

about the weather conditions. The third digit contains RWeather’s instruction to

RoboSpec. The other digits provide corollary information, which is instructive to a

user being informed of a problem. For a detailed description of each digit’s purpose,

see §5.5.

Once the user has properly installed hardware, provided the RoboSpec GUI

with appropriate information, and verified the existence of the necessary files,

observations may begin. With a few exceptions, RoboSpec then follows the normal

observing procedure used by human observers and described in §3.2. A discussion

of the necessary changes follows.

4.5 Changes to Observing Procedure

Through the beginning-of-night calibrations, RoboSpec behaves much the same

as a human observer. The first and most frequent departure from manual procedure

occurs during target acquisition. Rather than acquire a guide camera image after

slewing to a target, RoboSpec instead acquires an East Port image.

Target Acquisition Thanks to the East Port camera’s significantly larger field-

of-view, there is little concern that its image will not contain the target. And

because this method has provided reliable target acquisition, there was no reason

for it to be a contingent behavior rather than the default one. Time not spent

acquiring and analyzing the guide camera image is an additional benefit.
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The GAM position required for acquisition of East Port images is the same as

that required for comparison spectra using the arc lamp, a calibration performed

before and after observing each target. A human observer slews, takes guide camera

images to center the star on the slit manually, then moves the GAM mirror to

acquire a comparison spectrum, finally moving the GAM back to the position

required by the guide camera. Since RoboSpec instead uses the East Port camera

to place the star near the slit, it acquires a comparison spectrum before moving

the GAM mirror back to the guide camera position, thereby reducing the number

of required GAM movements.

Inclement Weather Delay Should RoboSpec close the observatory dome due

to unfavorable weather conditions, it will remain closed until conditions become

clear and remain that way for a quarter of an hour; that logic is programmed

into RWeather. In the same situation, a human observer could monitor satellite

images and nearby Doppler radar, and perhaps determine after only five minutes

that conditions had become suitable to resume observing. Thus the human observer

could have a ten-minute advantage over RoboSpec. Nonetheless, observatory safety

takes precedence over a few spectra, and RoboSpec’s efficiency exceeds that of

human observers by more than a few cautionary periods.

Nightly Observing Logs Like human observers, RoboSpec writes its own nightly

log files, containing information about the targets observed, the time, number,

and duration of exposures, weather conditions, and hardware or software prob-

lems. Writing a few lines to the log takes RoboSpec no longer than a second.

Thus the automated observing logs can contain significantly more detail than do
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manual logs, while incurring effectively no extra overhead. However, a disadvan-

tage is that RoboSpec is much less adept at identifying anomalous observations

than are human observers. Should the user discover an image that is clearly in-

valid, RoboSpec’s nightly log might still require some scrutiny to identify the likely

cause of the problem.

Aside from these differences, RoboSpec carries out spectroscopic observations

as a human would do with the same equipment. Rather than attempt to de-

scribe the intricacies of its behavior in words, we opt to use a flow chart. The

following section contains a visual descriptions of RoboSpec’s basic operation.

The entirety of RoboSpec’s AutoIt code is available from a link at the URL

http://www.appstate.edu/~grayro/Robotic/. Also available from that web-

page is the AutoIt code for TCP Camera3.

http://www.appstate.edu/~grayro/Robotic/
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4.6 Logic Flow Chart - Top-Level Operation
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Chapter 5

RoboticWeatherman

Figure 5.1: Graphical user interface for RoboticWeatherman, showing the Doppler
radar image downloaded from National Weather Service.

68
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5.1 Motivation and Basic Functionality

A substantial and vital undertaking when automating the observatory is pro-

tecting it from inclement weather. To accomplish this, we have written an Au-

toIt program called RoboticWeatherman (RWeather), which runs independently

of RoboticSpectroscopist. RWeather is intended to handle all interpretation

of weather information, and provide RoboSpec with a single integer indicating

whether it may continue observing, should pause and wait for conditions to im-

prove, or must close immediately.

RWeather makes use of several pieces of weather-monitoring hardware already

installed at the Dark Sky Observatory, as well as a Doppler Radar image down-

loadable from the National Weather Service website. RoboSpec maintains actual

control of the telescope mount, dome, and mirror and dome shutters, as well as

the observing procedure. However, it parses and responds immediately to a sim-

ple text file created by RWeather, weather.txt. RWeather also includes a manual

mode of operation, which an observer may use to override the program’s output.

RWeather switches to manual mode automatically in the case that all sources of

critical weather information are unavailable.

5.2 Hardware

Two ClarityII (CII) weather-monitoring sensor arrays are already installed at

the Dark Sky Observatory; one is located at the 32-inch telescope, the other at the

18-inch telescope. By default, RWeather uses the 32-inch sensor, as its proximity
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to the telescope makes it the preferred device. If the 32-inch sensor is unavailable,

RWeather will attempt to switch to the 18-inch sensor. If neither is available,

RWeather sets an output flag to close the dome and notify the user via text message.

The CII sensors create and append text files, which contain information de-

scribing temperature, wind, rain, irradiance, etc., and are parsed by RWeather.

The quantity of interest is an integer indicating whether the sky is clear, partly

cloudy, overcast, or rainy. Both CII instruments update their output file with new

readings every 2.1 seconds, writing several additional header lines every ten lines

of data, and sensor status information every 50 lines of data.

Also installed at DSO is a separate weather station we call WXData, after its

output file wxdata.txt. From this file RWeather obtains measurements of ambient

temperature, relative humidity, wind speed, and gust speed. Despite the availability

of these quantities from the CII output files, experience suggests that the values

reported by WXData are less prone to erroneous measurements. In the case that

wxdata.txt is unavailable, RWeather sets an output flag notifying RoboSpec to

continue normal operation. Information provided by WXData is considered non-

critical to RoboSpec’s operation, but the user will be informed of its absence. The

WXData output file is overwritten with new data roughly every two minutes.

5.3 Operation

RWeather is executed automatically when an observer first runs the RoboSpec

executable file. We opted to create a separate script to monitor weather, rather

than add the pertinent functionality to RoboSpec. The decision was motivated by
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the need to have RWeather monitor weather conditions continually. Tasks such as

acquiring a spectrum causes RoboSpec to ‘hang up’ for as long as five minutes. The

AutoIt language is not designed to support multi-thread programs, whereby two

independent processes may be operate in parallel from a single script. However,

Microsoft Windows handles threaded procedures with ease. Creating two sepa-

rate GUIs allows RWeather to monitor weather every 2.1 seconds, while RoboSpec

concurrently acquires a 300-second spectrum; the parallel design of the Windows

operating system takes care of running the two programs simultaneously.

When RWeather terminates properly, it deletes its weather.txt output file, in-

dicating to RoboSpec that it is no longer running. However should RWeather

crash, it may not execute the code required to delete weather.txt. To prevent such

an incident resulting in damage to the observatory, we added a heartbeat digit

to RWeather’s output. By incrementing every time RWeather analyzes weather

data (roughly every 3.14 seconds), the heartbeat digit indicates to RoboSpec that

RWeather has not crashed, and that the information contained in weather.txt is

accurate as of several seconds prior.

Should RWeather crash, RoboSpec will read the same heartbeat digit from

weather.txt for more than two consecutive 3.14 second periods. Thus it will know

that weather information is unavailable, and must close the dome and notify the

user. RWeather may simply be restarted manually, allowing RoboSpec to carry on

observing regularly.
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5.4 Control

RWeather defaults to its automatic mode of operation any time it is executed. It

immediately attempts to locate the data file from the 32-inch ClarityII sensor. If

unsuccessful, it attempts to switch to the 18-inch data file. Failing this, RWeather

sets an output flag indicating to RoboSpec that the dome should be closed and the

assigned user notified of the issue.

The user will find RWeather in manual mode, and if the weather is clear, may

then use the recently-enabled buttons to write control values to weather.txt manu-

ally. These values are 0 (weather is clear; continue observing), 1 (weather is partly

cloudy; pause observing), and 3 (weather is overcast or worse; close dome imme-

diately). The observer may also attempt to reinitialize automatic mode at any

time, although RWeather could once again fail to locate its required data files, and

subsequently revert to manual operation.

In addition to RWeather’s built-in ability to switch ClarityII sources, the GUI

includes a button that an observer may use to force such a switch. If one sensor

is online but obviously malfunctioning, for example, switching to the other would

be the quickest and easiest solution to attempt.

While operating in automatic mode, RWeather uses certain thresholds to identify

weather conditions that are safe for observing. These maximum acceptable values

for relative humidity, wind speed, gust speed, and radar base reflectivity can be

modified by the observer, although all quantities default to reasonable values.

Each value is adjusted individually, then all changes applied simultaneously by
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the ‘Update Thresholds’ button. Each new value is verified before being applied;

for example, the relative humidity threshold must be a number between zero and

100. Inputs that violate their respective criteria are coerced to the nearest legal

value, e.g., a relative humidity limit of 103 would be set to 100.

A significant portion of RWeather’s GUI is occupied by one of two images. The

default image is a screen capture from a wide-field all-sky infrared CCD camera

at the 32-inch telescope. RWeather downloads this image automatically as part of

its initialization procedure, and then replaces it every six minutes, as frequently as

the online image is updated. All-sky images are not processed at all by RWeather

to help determine weather conditions, but should be sufficient for a user to differ-

entiate between clear and overcast skies at a glance.

The second available image is the National Weather Service (NWS) Doppler

radar image, centered on the Knoxville/Tri-cities TN radar site. It provides in-

formation about the amount of precipitation, measured as base reflectivity, per

pixel21. Each pixel corresponds roughly to one square kilometer22. The image dis-

played on the GUI is of too low resolution to convey detailed information to the

observer, but can provide an estimate of the amount of nearby precipitation. Fig-

ure 5.1 displays a Doppler radar image rather than an image from the all-sky

camera.

21National Oceanic and Atmospheric Administration, National Weather Service, ‘RIDGE
Radar Frequently Asked Questions,’ http://www.srh.noaa.gov/jetstream/doppler/

radarfaq.html
22National Oceanic and Atmospheric Administration, National Weather Service, ‘Zooming

and Panning,’ http://www.srh.noaa.gov/jetstream/doppler/ridge.html#range

http://www.srh.noaa.gov/jetstream/doppler/radarfaq.html
http://www.srh.noaa.gov/jetstream/doppler/radarfaq.html
http://www.srh.noaa.gov/jetstream/doppler/ridge.html#range
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The full-size downloaded radar image, unlike the all-sky image, is used by

RWeather to determine weather conditions, and is replaced every ten minutes.

The displayed image also has a superimposed red circle, indicating the area that

RWeather searches for pixels containing significant precipitation. A button on the

GUI switches freely between the webcam and radar images. In addition, the full-

size versions of both images can be opened simply by clicking on the thumbnail

image displayed on RWeather.

After downloading a new Doppler radar image, RWeather analyzes each pixel in

the red circle. The circle itself corresponds to a 15-kilometer radius around DSO.

Another image available from the NWS is the color key for radar images. That

key was analyzed, and hexadecimal values for each color extracted. Those values

were then hard-coded into RWeather; the program will encounter some difficulty

should NWS ever change the key colors. For reference, Figure 5.1 has a threshold

value of 15, corresponding to the blue color displayed in the swatch next to the

input box. That particular blue has a hexadecimal RGB value of 0300F4.

Before scanning the radar pixels within 15km of DSO, RWeather reads the Radar

Threshold input box on the GUI. It then scans each pixel in range, comparing its

color to those at and above the value specified as the Radar Threshold. If any

pixel in range is found to have a color matching a value of base reflectivity higher

than the Radar Threshold, RWeather immediately instructs RoboSpec to close the

observatory dome. This behavior protects the telescope and instruments from fast-

moving weather fronts, which may not appear on the DSO weather sensors in time

to close the dome.
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Other thresholds used in RWeather’s logic are user-definable; sustained wind

speed, gust speed, and relative humidity can all be adjusted using the vWind,

vGust, and %RH input boxes, respectively. The default values are those displayed

in Figure 5.1. None of the threshold values, including the Radar Threshold, are

updated within RWeather’s logic until the user clicks the Update Thresholds but-

ton.

Each threshold indicates what value of the corresponding measured quantity

causes RWeather to issue an immediate ‘close’ command to RoboSpec. In all cases

except temperature Fahrenheit, threshold values indicate an upper limit; TempF is

a lower limit, since the dome motors stop functioning properly at low temperatures.

The thresholds for Clouds and TempF are hard-coded into RWeather, and cannot

be modified by the user.

5.5 Communication

Communication between RWeather and RoboSpec occurs through the weather.txt

text file. It currently contains five digits, each conveying a different piece of infor-

mation to RoboSpec. They are described in this section.

The first digit indicates whether the ambient temperature is above (0) or below

(1) 16 degrees Fahrenheit. The motors controlling the dome, and more importantly

the shutters that close the dome, begin malfunctioning around 14◦F. To protect

the telescope and instruments, RWeather instructs RoboSpec to close the dome

immediately should the temperature reach 16◦F.
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The data from WXData are not vital to RoboSpec’s operation, although the

additional information provides greater protection for the observatory equipment.

If RWeather cannot locate wxdata.txt, for example due to a network outage, it

sets the second digit in weather.txt to 1; otherwise that digit is 0. Should the user

notice that wxdata.txt is absent during questionable weather conditions, he or she

may opt to shut down RoboSpec to prevent any damage to the observatory.

The third digit indicates the action RoboSpec should take, in light of all avail-

able weather information. A value of 0 indicates that RoboSpec should continue

observations, 1 indicates that it should pause and wait for conditions to improve,

and 2 indicates that it should close the dome immediately. Additional error values

are 3, indicating that vital weather information is absent, and 4, indicating that

the user has switched RWeather to manual mode but has not yet chosen an output

value. RoboSpec enters safe mode if it receives one of the error values. For more

detail about the logic determining this digit, see the flow charts in §5.5. In addi-

tion, any action requiring the dome be closed immediately, such as temperature

below 16◦F, will force this digit to 2.

The fourth digit relates to images displayed on the RWeather GUI. The program

attempts to download and display the latest all-sky infrared camera image from

DSO, as well as a nearby Doppler radar image. Neither is vital to RoboSpec’s

operation, but both are useful to a user scrutinizing RWeather’s behavior. A value

of 0 for this digit indicates that both images were properly located and downloaded.

A value of 1 indicates a missing all-sky image, a value of 2 indicates a missing

Doppler radar image, and a value of 3 indicates that both images are absent. Since
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RWeather makes user of the radar data to detect incoming weather, its absence

may be of concern. However, RWeather will not alter its instruction to RoboSpec

due solely to lack of radar data.

The final digit in weather.txt is RWeather’s ‘heartbeat.’ When operating prop-

erly, weather.txt is updated roughly every three seconds, and this digit changes

with each update. It counts up from 0 to 9, then repeats. When the RWeather

script terminates, it normally destroys weather.txt, which signals to RoboSpec that

weather information is not available. A concern, however, is that RWeather could

crash and somehow terminate without destroying weather.txt. RoboSpec would

continue reading the same value from the file, never recognizing a problem. To

prevent such a situation, RoboSpec has been adapted to compare its most recent

reading from weather.txt to the previous reading. If the heartbeat digit does not

change over the course of roughly seven seconds, RWeather may have crashed, and

RoboSpec should enter safe mode.

5.6 Notes on Logic

As with RoboSpec, we have opted to describe specifics of RWeather’s operation

using flow charts, due to the complexity of some of the logic. A few points warrant

explicit explanation, however.

Delayed Action RWeather does not respond immediately to improving weather

conditions, regarding its observing instruction to RoboSpec. Similar behavior is

used at the STELLA Observatory; Granzer et al. (2010) refer to it as a ‘retard

time’ after a weather event.
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Weather conditions at DSO tend to fluctuate unpredictably. Patchy clouds are

common, and rain showers may be punctuated by brief periods of clear sky. We

want RoboSpec to avoid any attempt to resume observing if favorable weather

will only last a few minutes, so we require that conditions remain clear for a

fifteen minutes before RWeather change its instruction. Rain on the radar image

immediately causes RWeather to change its output flag to 2 (close). If the blip

happens to be a flock of birds migrating, for example, it may disperse quickly, and

the weather will again be clear. RWeather will start its ClearAt timer, and change

its output back to 0 (clear) only when the timer reaches fifteen minutes.

Conversely, if a single cloud happens to pass over the ClarityII sensor, we

want to prevent RoboSpec ceasing operation entirely. Thus partly-cloudy weather

causes RWeather to change its output to 1 (pause) and start its PauseAt timer.

If RWeather remains paused for fifteen minutes due to persistent patchy clouds,

it then changes its output to 2 (close). However, if conditions clear during a

pause, and remain that way for fifteen minutes as indicated by the ClearAt timer,

RWeather will instead change its output to 0 (clear). Thus the overhead associated

with closing the dome and disabling tracking is avoided, by preventing a dome

close being triggered by a rogue cloud. This and RWeather’s other governing logic

are illustrated in the following section.

Oscillating Conditions An additional concern is that patchy clouds may cause

the CII sensor array output to oscillate between clear and partly cloudy. Without

detecting that unusual case, RWeather would sit in the ‘pause’ case indefinitely.

It would alternate between the PauseAt and ClearAt timers, with neither ever
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reaching the fifteen minutes required to close or resume. Pausing observations

does not disable telescope tracking, and could damage the observatory by driving

the telescope to its physical limits.

To prevent such a situation, we have introduced a PauseOutputStartedAt timer.

Any time RWeather instructs RoboSpec to pause observations, the PauseOutput-

StartedAt timer starts running. It is stopped and reset if RWeather’s instruction

to RoboSpec changes to something other than pause. However if the timer runs

for half an hour, it sets a flag that forces RWeather into the ‘close’ state. The

longer time limit gives patchy clouds time to clear, should the weather event be

short-lived. This logic is handled in RWeather’s Cleanup function, shown in §5.6.1,

but is not shown in detail.

The following section contains flow charts describing RWeather’s general behav-

ior and weather analysis logic. The entirety of RWeather’s AutoIt code is available

from a link at the URL http://www.appstate.edu/~grayro/Robotic/.

http://www.appstate.edu/~grayro/Robotic/
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5.7 Logic Flow Charts

5.7.1 Top-Level Operation
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5.7.2 Evaluate Weather Conditions

check timers
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Chapter 6

Conclusion

6.1 Efficiency

ASU’s astronomical spectroscopists began using RoboSpec extensively in Jan-

uary 2016. Between then and the end of March 2016, RoboSpec’s record for spectra

acquired during a single night of observing was 131. For comparison, a human ob-

server’s record between January and March of the previous year, when RoboSpec

was not used, was 124 spectra. However, those spectra were obtained from a single

object. That type of observing incurs almost no overhead whatsoever, since it is

never necessary to slew to and acquire a new target. When following the normal

observing procedure of acquiring several spectra from one target then slewing to

another, the record for a human observer was 119 spectra in a night23.

Thus RoboSpec showed an improvement of roughly 10% in absolute maximum

number of spectra acquired in a single night, compared to human observers, when

23Gray, R.O. 2016, Private communication
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using a similar observing procedure. During those three-month periods, the average

number of spectra acquired per night was 69 for human observers and 78 for

RoboSpec, not counting nights with zero spectra. This was an improvement of

roughly 13% for RoboSpec23.

Unfortunately, weather conditions play a significant role in observing efficiency,

and can vary substantially from year to year. Notes from observing logs indicate

that 2015 was relatively clear between January and March, whereas the same pe-

riod in 2016 was comparatively cloudy. Thus the above statistics could be skewed

in favor of human observers. Before a definite conclusion can be made about

RoboSpec’s efficiency, more data are required. A full year of automated observ-

ing might be sufficient, but two or three years would hopefully mitigate the effects

of long-term weather variation23.

Even without extensive statistics describing observing efficiency, RoboSpec ap-

pears to have a non-anomalous advantage over human observers. And in addition

to a slight improvement in raw volume of data obtained, automated observations

are performed while the assigned observer sleeps. Dr. Richard Gray describes the

longest nights of manual observing as “being Herculean tasks”23. Delegating that

responsibility to RoboSpec is a welcome change, even were automated observing

only equally as productive as manual observing.

6.2 Future Additions

Auto Start As mentioned in §4.4, RoboSpec’s Auto Start feature has not yet

been implemented. It will allow users to set RoboSpec running in the afternoon,
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and pay it little heed until the next morning. This will be particularly useful for

busy faculty with afternoon and evening obligations. Thus automation will prevent

research from being neglected, despite increasingly demanding academic schedules.

Queue-Based Observing Appalachian State University’s astronomical spec-

troscopists benefit from nearly identical instrument configurations. Thus their re-

search projects are well-suited for queue-based observing, requiring few, if any,

physical modifications whatsoever to the observatory setup. This would increase

RoboSpec’s efficiency further, allowing targets from separate projects to be ob-

served as close as possible to their preferred time.

Plate Solving Plate solving will also be added, allowing users to observe stars

that are not the brightest in the nearby field. The target acquisition procedure

discussed in §4.1 will require fundamental modification, since a simple brightest-

pixel approach will no longer suffice. However, plate solving will allow studies of

densely-populated regions of targets, such as star clusters, where a comprehensive

survey including every star is desirable.

Guest FTP The new tabbed GUI we designed for RoboSpec accounts for the

possibility of guest observers. As mentioned in §4.3, regular users receive archived

and compressed data files automatically via FTP after RoboSpec completes observ-

ing. However, that feature is not currently available to guest observers. We hope

to add it eventually, allowing visiting astronomical spectroscopists to conduct re-

search using the 32-inch telescope without ever having to visit the observatory.
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Automatic Data Reduction The only drawback to the automated file transfer

routine is that the data are not reduced. The user is still responsible for apply-

ing calibrations, extracting spectra, etc. manually. An automatic data reduction

pipeline is currently under development, and will provide users with analysis-ready

data before noon the day after observations. Should any particularly interesting

phenomena appear, the user may update the next night’s target list to revisit those

objects. In addition, data reduction can be tedious; an astronomer’s time can be

much better spent.

6.3 Concluding Remarks

Just as remote access drastically changed observing at the DSO, “automated

observing has completely revolutionized spectroscopy at the Dark Sky Observa-

tory”24. Not only are faculty astronomers able to obtain over one hundred spectra

on clear nights, all with proper calibrations, they may keep regular sleep sched-

ules. And upon arriving at their office the next day, they will find their data au-

tomatically downloaded and available by mid-morning. RoboticSpectroscopist,

with help from RoboticWeatherman and various other scripts, conducts automated

spectroscopic observations adeptly and reliably.

Through this automation project, we achieved our goal of making observational

astronomical spectroscopy more compatible with the academic obligations and

schedules of university faculty. We also realized the improvements to observing

efficiency and data quality proposed by Eaton (1995) near the outset of robotic

24Gray 2016, Private Communication
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spectroscopy. RoboSpec will continue to improve, no doubt, but is already a re-

markable and useful addition to the Dark Sky Observatory.
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González-Pérez, J.N., Czesla, S., Wolter, U., Jack, D., Eenens, P., & Trinidad,
M.A. 2014, Astronomische Nachrichten, 335, 8, 787

Weber, M., Strassmeier, K.G., & Granzer, T. 2012, Astronomical Society of India
Conference Series, 7, 165



Vita

Daniel Edwin Rosenberg was born in Bradford, P.A. in 1990. He moved with

his parents to Boone, N.C. in 1991, and graduated from Watauga High School in

June of 2009. He attended the University of North Carolina at Chapel Hill for

undergraduate studies, and conducted research as part of the RESOLVE team led

by Dr. Sheila Kannappan. In December 2013, he received his Bachelor of Science

in Physics with a concentration in Astronomy and Astrophysics.

In August of 2014, Mr. Rosenberg began pursuing a Master of Science in En-

gineering Physics at Appalachian State University, with a concentration in Labo-

ratory Automation. He began working with Dr. Richard Gray in January of 2015

to develop a method of robotic astronomical spectroscopy. He benefitted from a

National Science Foundation grant awarded to Dr. Gray, in addition to research

funding from Appalachian State University’s Research Council and from North

Carolina Space Grant. He received additional funding for general academic ex-

penses from the James C. Greene Fellowship.

Mr. Rosenberg began work at CITI-LLC, a private systems integration com-

pany headquartered in Charlotte, N.C, and received his Master of Science in Au-

gust 2016.

89


	Abstract
	Acknowledgements
	Title Page
	Graduate Committee Approval
	Copyright
	Abstract
	Acknowledgments
	Introduction
	History of Automated Spectroscopy
	A Logical Development
	Benefits of Automation
	Improvements in Observing Efficiency
	Improvements in Data Quality

	Successful Automated Spectroscopy
	The Automatic Spectroscopic Telescope
	Conversion of the 1.2-Meter Euler Telescope
	Subsequent Automated Spectroscopic Telescopes

	The Future of Automated Spectroscopy

	Spectroscopy on the 32-Inch Telescope and Gray-Miller Spectrograph
	Overview and History
	Nightly Procedure for Spectroscopy
	Instrument Installation and Evening
	Normal Observing
	Dawn


	RoboticSpectroscopist
	Motivation and Basic Functionality
	Hardware
	Software
	GUI Control and Normal Operation
	User Tab
	Startup Tab
	Observing Tab
	Necessary Files

	Changes to Observing Procedure
	Logic Flow Chart - Top-Level Operation

	RoboticWeatherman
	Motivation and Basic Functionality
	Hardware
	Operation
	Control
	Communication
	Notes on Logic
	Logic Flow Charts
	Top-Level Operation
	Evaluate Weather Conditions


	Conclusion
	Efficiency
	Future Additions
	Concluding Remarks

	Bibliography
	Vita

